Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis

Uffe B. Kjærulff and Anders L. Madsen Answers to Exercises

August 3, 2009

Answer to Exercise 11.1: See table below

(a) B L I	
$\begin{array}{c c} (a) & \\ \hline H(X) & 0.6881 & 0.213 & 0.0578 \end{array}$	
	x
(1) $I(B,Y)$ 0 0.2506 0.0462 0	.0008
(b) $I(L,Y) = 0$ 0.0176 0.0224 0	.1281
I(T,Y) 0.0004 0.0028 0 0	.0219
A D S X	
(a) $I(B,Y) \approx 0 0 0.0275$	
(C) $I(L,Y) \approx 0 0 0.2819$	
I(T,Y) 0.0006 0 0 0.0233	

Answer to Exercise 11.2:

The variable StateOfCar (SOC) is associated with P(SOC) = (0.7, 0.3) and for the other two variables we have:

		Test1					Test2		
		$\neg d$	d	inc.			$\neg d$	d	
	d	0.8	0.05	0.15		$roc \neg d$	0.8	0.2	
500	1	0.05	0.75	0.2		d d	0.25	0.75	

(b) We have:

$$P(\mathsf{SOC}|\mathsf{Test1}) = \frac{P(\mathsf{SOC},\mathsf{Test1})}{P(\mathsf{Test1})} = \frac{P(\mathsf{Test1}|\mathsf{SOC})P(\mathsf{SOC})}{\sum_{\mathsf{SOC}} P(\mathsf{Test1}|\mathsf{SOC})P(\mathsf{SOC})}$$

				$\mathrm{Test1}$				
			$\neg d$	d	inc.			
Using the tables we get (for $P(SOC, Test1)$):	SOC	¬d	0.56	0.035	0.105	_		
		d	0.015	0.225	0.06			
		F	P(SOC, Test1)					
					$\mathrm{Test1}$			
				$\neg d$	d	inc.		
Hence, $P(\text{Test1}) = (0.575, 0.26, 0.165)$ and fire	5) and finally:		¬ ¬d	0.974	0.135	0.636		
		500	d	0.026	0.865	0.364		
				P(SOC Test1)				

(c)
$$\frac{\text{Test}_1 \quad \text{Test}_2}{\text{I(SOC, Y)} \quad 0.3305 \quad 0.1373}$$

Answer to Exercise 11.3:

(a) Through construction of the influence diagram in HUGIN and performing inference without evidence (no information is available prior to taking decision D_1), we get the expected utilities 17.7 and 19.0 of performing actions d_{11} and d_{12} , respectively. Thus, we should first perform action d_{12} . From the influence diagram it appears that the value of variable T is known prior to taking decision D_2 . Thus, by instantiating D_1 to d_{12} and T to t_1 and t_2 we get, respectively,

$$EU(D_2|D_1 = d_{12}, T = t_1) = (18.3, 15.2)$$

and

$$EU(D_2|D_1 = d_{12}, T = t_2) = (19.6, 10.4).$$

Thus, since the expected utility of decision d_{21} is greater than the expected utility of decision d_{22} no matter the value of T, the solution to the decision problem is given by the sequence (d_{12}, d_{21}) of decisions.

- (b) The information on variable T makes no difference, as the expected utility of decision d_{21} is greater than the expected utility of decision d_{22} no matter the value of T.
- (c) With these modifications we get

$$EU(D_1) = (50.8, 51.3),$$

$$EU(D_2|D_1 = d_{12}, T = t_1) = (57.8, 32.7),$$

and

$$EU(D_2|D_1 = d_{12}, T = t_2) = (40.2, 46.8).$$

That is, now the information on variable T makes a difference, and we get solutions (d_{12}, d_{21}) if $T = t_1$ and (d_{12}, d_{22}) if $T = t_2$.

(d) Under the original quantification VOI(T) = 0 as the optimal decision does not depend on the observation made on T. Under the revised quantification VOI(T) = 10.224 as the optimal decision depends on the observation made on T.

Answer to Exercise 11.4:

we get:

(

$$EU(Buy) = (1850, 1980) \tag{1}$$

hence, V(P(Flu)) = 1980.

				buy	
Now $EU(buy fever) =$			yes	no	
	fever	yes	1850	1829.36	
		no	1850	2000	
thus, $V(P(flu fever)) =$	= (1850,	1997.88) and i	n particula	ar:

$$EV(fever) = 1982.19;$$

 $EB = 1982.19 - 1980 = 2.19;$
 $EP = 2.19 - 10 = -7.81.$