
HUGIN Graphical User Interface
Documentation

Release 8.9

HUGIN EXPERT A/S

May 29, 2020

CONTENTS

1 Introduction 3
1.1 The Origin of HUGIN . 3
1.2 Basic Concepts . 3
1.3 The HUGIN Development Environment . 4

2 The HUGIN Development Environment 5
2.1 Components of the HUGIN Development Environment . 5

2.1.1 The HUGIN Decision Engine . 5
2.1.2 Application Program Interfaces . 6
2.1.3 The HUGIN Graphical User Interface . 6
2.1.4 Extra Features . 6

2.2 Bayesian Network Technology in the HUGIN Development Environment 6
2.2.1 Inference . 8
2.2.2 Limited Memory Influence Diagrams . 8
2.2.3 Networks with Conditional Gaussian Variables . 10

2.3 Versions . 11
2.3.1 Commercial Versions . 11
2.3.2 Academic Versions . 11
2.3.3 Free Evaluation Version . 12
2.3.4 Deployment Licences . 12
2.3.5 Special HUGIN API Versions . 12

2.4 System Requirements . 12
2.4.1 Memory Requirements . 12
2.4.2 Application Programming Interfaces . 13

2.5 HUGIN Software License Agreement . 13

3 Tutorials 15
3.1 Basic Concepts . 15
3.2 Learning More . 15

3.2.1 Paradigms of Expert Systems . 16
3.2.2 Introduction to Bayesian Network . 19
3.2.3 How to Build a Bayesian Network . 26
3.2.4 Introduction to (Limited Memory) Influence Diagrams . 36
3.2.5 How to Build a (Limited Memory) Influence Diagram . 44
3.2.6 Introduction to Object-Oriented Networks . 50
3.2.7 How to Build an Object-Oriented Bayesian Network . 55
3.2.8 Node Table Tutorial . 62
3.2.9 Table Generator Tutorial . 72
3.2.10 The Case and Data File Formats . 85
3.2.11 Case Generator Tutorial . 86

© Copyright 2020, HUGIN EXPERT A/S i

3.2.12 The Net Language . 88
3.2.13 Structure Learning Tutorial . 95
3.2.14 EM Learning Tutorial . 103
3.2.15 Adaptation Tutorial . 109

4 Manual 115
4.1 Functions and Tools . 115

4.1.1 Gaussian (Normal) Distribution Function . 115
4.1.2 Continuous-Discrete Node Value Transfer Function . 117
4.1.3 Level of Significance . 118
4.1.4 Traverse Instance . 119
4.1.5 Simulation . 120
4.1.6 Markov Blanket . 120
4.1.7 Run Mode . 121
4.1.8 Edit Mode . 122
4.1.9 Compress . 123
4.1.10 Approximate . 124
4.1.11 Compile . 124
4.1.12 Recompile . 126
4.1.13 Auto Propagation . 127
4.1.14 Auto Update Graphs . 128
4.1.15 Temporal Clone . 129
4.1.16 Instance Node Replace Class . 129
4.1.17 Text labels . 130
4.1.18 Select State . 131
4.1.19 Select All . 131
4.1.20 Belief Precision . 131
4.1.21 Constraints . 133
4.1.22 Prediction . 137
4.1.23 Enter Likelihood . 140
4.1.24 Align . 142
4.1.25 Tile Windows Horizontally . 142
4.1.26 Tile Windows Vertically . 143
4.1.27 Cascade Windows . 143
4.1.28 Color Chart . 143
4.1.29 Component Tree . 144
4.1.30 Resize Node . 145
4.1.31 Layout Network Nodes . 145
4.1.32 Lock Display of Evidence . 145
4.1.33 Retract Evidence . 146
4.1.34 Show Class . 146
4.1.35 Link . 146
4.1.36 Causal Link . 147
4.1.37 Binding Link . 148
4.1.38 Link (or Arc) Reversal . 148
4.1.39 Toggle Node List . 149
4.1.40 Expressions . 149
4.1.41 Show / Hide Node Locator . 149
4.1.42 Information . 150
4.1.43 Initialize . 150
4.1.44 Update global node and link groups . 150
4.1.45 Update Monitor Graphs . 150
4.1.46 Function Tool . 151
4.1.47 Instance Tool . 151

ii © Copyright 2020, HUGIN EXPERT A/S

4.1.48 Select Tool . 151
4.1.49 Continuous Chance Tool . 152
4.1.50 Discrete Chance Tool . 152
4.1.51 Decision Tool . 152
4.1.52 Discrete Function Tool . 153
4.1.53 Change Link Tool . 153
4.1.54 Link Tool . 154
4.1.55 Reverse Link Tool . 154
4.1.56 Utility Tool . 154
4.1.57 Tables Pane Button . 155
4.1.58 EM Learning Button . 155
4.1.59 Adaptation Button . 155
4.1.60 Case Generator Button . 155
4.1.61 Toolbar . 156
4.1.62 Save As . 156
4.1.63 Save . 156
4.1.64 Save All . 156
4.1.65 Save Elimination Order . 157
4.1.66 Save All Classes in Single File As. 157
4.1.67 Copy . 157
4.1.68 Paste . 157
4.1.69 Cut . 158
4.1.70 Delete . 158
4.1.71 Delete State . 159
4.1.72 Close . 159
4.1.73 Close All . 159
4.1.74 Open . 159
4.1.75 New . 160
4.1.76 Exit . 160
4.1.77 Zooming . 160
4.1.78 Print . 161
4.1.79 Print Network . 161
4.1.80 Print Node Table . 163
4.1.81 Print Probabilities . 163
4.1.82 Generate Network HTML Documentation . 164
4.1.83 Statistics . 164
4.1.84 Recall Policies . 165
4.1.85 Store Policies . 165
4.1.86 Reset uninstantiated policies . 165
4.1.87 Rename Network . 166
4.1.88 Show Last Error . 166
4.1.89 Bug Report . 166
4.1.90 Report Beliefs . 166

4.2 Network Windows and Menus . 167
4.2.1 Network Pane . 167
4.2.2 Network Properties . 167
4.2.3 Network Window . 171
4.2.4 Network Attributes . 172
4.2.5 Network Properties DBN Pane . 172
4.2.6 Network Menu . 173
4.2.7 Main Window . 174
4.2.8 About . 174
4.2.9 View Menu . 176
4.2.10 Window Menu . 178

© Copyright 2020, HUGIN EXPERT A/S iii

4.2.11 Wizards Menu . 179
4.2.12 File Menu . 179
4.2.13 Help Menu . 180
4.2.14 Edit Menu . 181
4.2.15 Options Menu . 182
4.2.16 Policy Window . 183
4.2.17 Monitor Windows . 183
4.2.18 Preferences . 189
4.2.19 Window List . 193
4.2.20 HUGIN Web Site . 193
4.2.21 General Help . 193
4.2.22 Display . 194
4.2.23 Groups and Colors . 195

4.3 Nodes and Tables . 196
4.3.1 Node . 196
4.3.2 Node Name (Node Identifier) . 196
4.3.3 Node Label . 196
4.3.4 Node Properties . 197
4.3.5 Node Locator . 199
4.3.6 Node Type . 201
4.3.7 Node Tab . 201
4.3.8 Node Attributes . 204
4.3.9 Node State Generator . 205
4.3.10 Interface Tab . 207
4.3.11 Discrete Chance Node . 208
4.3.12 Continuous Chance Node . 209
4.3.13 Decision Node . 209
4.3.14 Instance Node . 209
4.3.15 Function Node . 210
4.3.16 Utility Node . 211
4.3.17 Input Node . 211
4.3.18 Output Node . 212
4.3.19 Interface Node . 213
4.3.20 Discrete Function Node . 213
4.3.21 Expand Instance Node . 214
4.3.22 Collapse Instance Node . 215
4.3.23 Expand Instance Nodes . 215
4.3.24 Collapse Instance Nodes . 215
4.3.25 Expand Node List . 215
4.3.26 Collapse Node List . 216
4.3.27 Experience Tables . 216
4.3.28 Fading Tables . 217
4.3.29 Open Tables . 217
4.3.30 Utility Table . 218
4.3.31 Decision Table . 218
4.3.32 Table Tab . 218
4.3.33 States Tab . 219
4.3.34 Add Experience Table to all Chance Nodes . 221
4.3.35 Add Fading Table to all Discrete Nodes . 221
4.3.36 Add State . 221
4.3.37 Copy Table . 221
4.3.38 Manually Specify Table . 222
4.3.39 Arrange Tables . 223
4.3.40 Close Tables . 224

iv © Copyright 2020, HUGIN EXPERT A/S

4.3.41 Tables Pane . 224
4.3.42 Node Table . 225
4.3.43 Conditional Probability Table (CPT) . 226
4.3.44 Absorb Node . 226
4.3.45 Toggle Private Nodes . 227
4.3.46 Move Interface Node . 227
4.3.47 Models . 227
4.3.48 Node List Pane . 227

4.4 Algorithms . 228
4.4.1 Adaptation . 228
4.4.2 Online EM Adaptation . 230
4.4.3 Propagation . 230
4.4.4 PC Algorithm . 230
4.4.5 NPC Algorithm . 231
4.4.6 Prop Sum Normal . 235
4.4.7 Prop Max Fast Retract . 235
4.4.8 Prop Sum Fast Retract . 235
4.4.9 Prop Max Normal . 236
4.4.10 Rebane-Pearl Polytree . 236
4.4.11 Tree Augmented Naive Bayes . 237
4.4.12 Chow-Liu Tree . 237
4.4.13 Junction Tree . 237
4.4.14 Single Policy Update . 241
4.4.15 Greedy Search-And-Score Structure Learning . 241

4.5 Wizards . 242
4.5.1 Analysis Wizard . 242
4.5.2 Learning Wizard . 249
4.5.3 Adaptation Wizard . 250
4.5.4 Expression Builder Wizard . 256
4.5.5 Code Wizard . 262
4.5.6 EM Learning Wizard . 263
4.5.7 Hidden Node Analyzer . 263
4.5.8 Feature Selection Analyzer . 266
4.5.9 Parameter Sensitivity Wizard . 270

4.6 Methods Of Analysis . 270
4.6.1 Methods of Analysis . 270
4.6.2 D-Separation (Operation) . 270
4.6.3 D-Separation (Theory) . 271
4.6.4 Requisite Parents . 273
4.6.5 Requisite Ancestors . 273
4.6.6 Data Conflict Analysis . 274
4.6.7 Evidence Sensitivity Analysis . 281
4.6.8 Evidence Sensitivity Analysis (Decision) . 290
4.6.9 Utility Sensitivity Analysis . 291
4.6.10 Value of Information Analysis . 294
4.6.11 Continuous-Discrete Node Value Transfer Function . 302
4.6.12 Convolution of Frequency-Impact Distributions . 303
4.6.13 The Exposure, Occurrence and Impact Loss Model . 305
4.6.14 Joint Probability Distribution . 308
4.6.15 Correlation Analysis Dialog . 311
4.6.16 Distance Analysis Dialog . 314
4.6.17 Parameter Sensitivity Analysis . 317
4.6.18 Two Way Parameter Sensitivity . 322

4.7 Bayesian Network . 327

© Copyright 2020, HUGIN EXPERT A/S v

4.7.1 Bayesian Networks . 327
4.7.2 Limited Memory Influence Diagram . 327
4.7.3 Object-Oriented Network . 328
4.7.4 Conditional Independence and Dependence . 330
4.7.5 Model Verification . 330
4.7.6 OOBN EM Learning . 330
4.7.7 Dynamic Bayesian Network . 332

4.8 Data Manipulation . 334
4.8.1 EM Learning . 334
4.8.2 Structure Learning . 335
4.8.3 Auto Filtering (DBN) . 336
4.8.4 Auto Prediction (DBN) . 342
4.8.5 Leave One Out Propagation . 362
4.8.6 Case Files . 370
4.8.7 Data Files . 371
4.8.8 Case Generator . 373
4.8.9 Data Frame . 373
4.8.10 Data Sequences in HUGIN . 381
4.8.11 Data Processing . 390
4.8.12 Data Classifier Performance . 403
4.8.13 Data Analysis . 407
4.8.14 Data Matrix . 411
4.8.15 Data Frame With Database Connection . 414
4.8.16 Discretization . 415
4.8.17 Import Information . 420
4.8.18 Import Network Description from Tables . 420
4.8.19 Load Case . 426
4.8.20 Save Case . 426
4.8.21 Recently Used Files . 426
4.8.22 Save in a File without GUI Attributes . 426
4.8.23 Write as BMP . 428
4.8.24 Write as PDF . 429
4.8.25 Write as SVG . 429
4.8.26 Data Dependences . 430
4.8.27 Data Acquisition . 432
4.8.28 Feature Selection . 433
4.8.29 Nodes Summary . 433
4.8.30 Prior Knowledge . 434
4.8.31 EM Learning . 436
4.8.32 Structural Constraints . 437
4.8.33 AIC / BIC / LL . 439
4.8.34 Case Beliefs . 440
4.8.35 Data Accuracy . 442
4.8.36 Data Source . 444
4.8.37 Dependencies . 445
4.8.38 Sampling . 447
4.8.39 Application Update . 448
4.8.40 What is Data Conflict Analysis? . 448
4.8.41 Structural Uncertainties Help . 452
4.8.42 Structure Learning Help . 453

5 Releases 459
5.1 Release 6.0 November 2001 . 459
5.2 Release 6.1 April 2002 . 459

vi © Copyright 2020, HUGIN EXPERT A/S

5.3 Release 6.2 January 2003 . 460
5.4 Release 6.3 June 2003 . 460

5.4.1 User feedback form . 461
5.5 Release 6.4 March 2004 . 462

5.5.1 HUGIN Graphical User Interface v6.4: . 462
5.5.2 HUGIN Decision Engine v6.2: . 463

5.6 Release 6.5 December 2005 . 463
5.6.1 Hugin Graphical User Interface v6.5: . 463
5.6.2 Hugin Decision Engine v6.3: . 464

5.7 Release 6.6 September 2005 . 464
5.7.1 Hugin Graphical User Interface v6.6: . 465
5.7.2 HUGIN Decision Engine v6.4: . 466

5.8 Release 6.7 June 2006 . 466
5.8.1 HUGIN Graphical User Interface v6.7: . 467
5.8.2 HUGIN Decision Engine v6.5: . 468

5.9 Release 6.8 April 2007 . 469
5.9.1 HUGIN Graphical User Interface v6.8: . 469
5.9.2 HUGIN Decision Engine v6.6: . 470

5.10 Release 6.9 November 2007 . 471
5.10.1 HUGIN Decision Engine v6.7: . 472

5.11 Release 7.0 September 2008 . 473
5.11.1 HUGIN Decision Engine v7.0: . 474

5.12 Release 7.1 March 2009 . 475
5.12.1 HUGIN Graphical User Interface v7.1: . 475
5.12.2 HUGIN Decision Engine v7.1: . 476

5.13 Release 7.2 November 2009 . 476
5.13.1 HUGIN Graphical User Interface v7.2 . 476
5.13.2 HUGIN Decision Engine v7.2 . 477

5.14 Release 7.3 March 2010 . 477
5.14.1 HUGIN Graphical User Interface v7.3 . 477
5.14.2 HUGIN Decision Engine v7.3 . 478

5.15 Release 7.4 October 2010 . 479
5.15.1 HUGIN Graphical User Interface v7.4 . 479
5.15.2 HUGIN Decision Engine v7.3 . 480

5.16 Release 7.5 June 2011 . 480
5.16.1 HUGIN Graphical User Interface v7.5 . 480
5.16.2 HUGIN Decision Engine v7.5 . 481

5.17 Release 7.6 February 2012 . 481
5.17.1 HUGIN Graphical User Interface v7.6 . 481
5.17.2 HUGIN Decision Engine v7.6 . 482

5.18 Release 7.7 December 2012 . 482
5.18.1 HUGIN Graphical User Interface v7.7 . 482
5.18.2 HUGIN Decision Engine v7.7 . 483

5.19 Release 7.8 May 2013 . 484
5.19.1 HUGIN Graphical User Interface v7.8 . 484
5.19.2 HUGIN Decision Engine v7.8 . 485

5.20 Release 8.0 . 485
5.20.1 HUGIN Graphical User Interface v8.0 . 485
5.20.2 HUGIN Decision Engine v8.0 . 485

5.21 Release 8.1 . 486
5.21.1 HUGIN Graphical User Interface v8.1 . 486
5.21.2 HUGIN Decision Engine v8.1 . 487

5.22 Release 8.2 . 487
5.22.1 HUGIN Graphical User Interface v8.2 . 487

© Copyright 2020, HUGIN EXPERT A/S vii

5.22.2 HUGIN Decision Engine v8.2 . 488
5.23 Release 8.3 . 488

5.23.1 HUGIN Graphical User Interface v8.3 . 488
5.23.2 HUGIN Decision Engine v8.3 . 489

5.24 Release 8.4 . 489
5.24.1 HUGIN Graphical User Interface v8.4 . 489
5.24.2 HUGIN Decision Engine v8.4 . 490

5.25 Release 8.5 . 490
5.25.1 HUGIN Graphical User Interface v8.5 . 490
5.25.2 HUGIN Decision Engine v8.5 . 491

5.26 Release 8.6 . 491
5.26.1 HUGIN Graphical User Interface v8.6 . 491
5.26.2 HUGIN Decision Engine v8.6 . 491
5.26.3 Tools introduced with HUGIN v8.6 . 491
5.26.4 HUGIN QGIS BBN Plugin . 492

5.27 Release 8.7 . 492
5.27.1 HUGIN Graphical User Interface v8.7 . 492
5.27.2 HUGIN Decision Engine v8.7 . 492

5.28 Release 8.8 . 493
5.28.1 HUGIN Graphical User Interface v8.8 . 493
5.28.2 HUGIN Decision Engine v8.8 . 493

5.29 Release 8.9 . 493
5.29.1 HUGIN Graphical User Interface v8.9 . 493
5.29.2 HUGIN Decision Engine v8.9 . 494

6 Examples 495
6.1 HUGIN Examples . 495

6.1.1 The Oil Wildcatter . 495
6.1.2 The Stud Farm . 497
6.1.3 Monty Hall Puzzle . 501

6.2 Modeling Examples . 503
6.2.1 Introduction . 504
6.2.2 Asia (the Chest Clinic) . 510
6.2.3 A simplified poker game . 511
6.2.4 The Mildew examples . 513
6.2.5 Competitive Analysis Bayesian Networks . 516
6.2.6 The Two Dice Variables . 518

7 References 519

Index 523

viii © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

The HUGIN Graphical User Interface is an interactive tool enabling you to use the facilities of the HUGIN Decision
Engine. It can help you construct models that can be used in other applications.

The HUGIN Graphical User Interface is also ideal for educational purposes. When introducing the concept of Bayesian
networks to a group of students, they will be very motivated if they can model and test Bayesian networks using an
easy-to-use tool.

© Copyright 2020, HUGIN EXPERT A/S 1

HUGIN Graphical User Interface Documentation, Release 8.9

2 © Copyright 2020, HUGIN EXPERT A/S

CHAPTER

ONE

INTRODUCTION

1.1 The Origin of HUGIN

During an EU sponsored research project (under the ESPRIT program) on diagnosing neuromuscular diseases, the
Bayesian network MUNIN was constructed. A research group at Aalborg University worked on developing correct
and efficient computation methods for the diagnosis problem. Some results had at that time been obtained by American
researchers, but a very obstinate problem still remained, which prevented Bayesian networks from being used in the
construction of expert systems. The problem was known as the rumour problem: you may hear the same story through
several different channels; but still the story may originate from the same source. Without knowing whether or not
your channels are independent, you cannot combine the statements correctly.

In Bayesian networks, the rumour problem appears when a cause can influence the same event through different paths
in the network.

The problem was solved and general methods were made available to be used in any domain which can be modeled
by a Bayesian network.

The methods were programmed into a general development and runtime system, which was easy to use for anyone
wishing to construct an expert system based on Bayesian networks. The system was called HUGIN. Over the years the
system has been extended in various ways (e.g. (limited-memory) influence diagrams (LIMIDs), continuous variables,
structure learning, adaptation, object-oriented specification of Bayesian networks and LIMIDs, etc).

1.2 Basic Concepts

Before you can use the HUGIN Graphical User Interface , you should at least understand the concept of Bayesian
Network (page 19) which is described in the Tutorials (page 15) section. This section also contains a step-by-step
description of how to construct a Bayesian network (page 26) using the HUGIN Graphical User Interface.

The extension of Bayesian networks with decision and utility nodes, known as influence diagrams, allows you to model
decision scenarios explicitly. If you are not familiar with (limited-memory) influence diagrams (LIMIDs (page 36)),
you can also learn about these in the Tutorials (page 15) section. There is also a step-by-step description of how to
construct a LIMID (page 44) using the HUGIN Graphical User Interface.

Also, you can learn about the concept of object-oriented networks (page 50), which provides a very powerful mecha-
nism for constructing models with repetitive patterns and for constructing models in a hierarchical fashion (top-down,
bottom-up, or a mix of the two), making large models much more readable. Again, there is a step-by-step description
of how to construct an object-oriented network (page 55),using the HUGIN Graphical User Interface.

© Copyright 2020, HUGIN EXPERT A/S 3

HUGIN Graphical User Interface Documentation, Release 8.9

1.3 The HUGIN Development Environment

The HUGIN Graphical User Interface is a component of the HUGIN Development Environment (page 5). The two
other main components are the HUGIN Decision Engine (page 5) and the HUGIN Application Program Interface
(page 6).

4 © Copyright 2020, HUGIN EXPERT A/S

CHAPTER

TWO

THE HUGIN DEVELOPMENT ENVIRONMENT

The HUGIN Development Environment provides a set of tools for constructing model-based decision support systems
in domains characterized by inherent uncertainty. The models supported are Bayesian networks (BNs) and their
extension (limited-memory) influence diagrams (LIMIDs). The HUGIN Development Environment allows you to
define both discrete domain variables and to some extent continuous domain variables in your models.

You have the opportunity to use the HUGIN Decision Engine (HDE) through the HUGIN Graphical User Interface –
an easy-to-use graphical environment. You can also use the HDE through one of several APIs (Application Program
Interfaces) which come as libraries for C, C++, .NET and Java, and as an ActiveX server. More information about the
versions of the HUGIN Development Environment that are available can be found in the Versions (page 11) section.

The HUGIN Development Environment can be used to construct models as components in applications for decision
support, data mining, and expert systems. The application communicates with the constructed component models
through one of the HUGIN APIs (page 5).

2.1 Components of the HUGIN Development Environment

The HUGIN Development Environment has three main components: The HUGIN Decision Engine, a collection of
Application Program Interfaces, and the HUGIN Graphical User Interface.

2.1.1 The HUGIN Decision Engine

The HUGIN Decision Engine (HDE) performs reasoning on a knowledge base represented as a Bayesian network or
LIMID. The HDE performs all data processing and storage maintenance associated with the reasoning process. An
important part of the HDE is the compiler, which transforms networks into efficient structures (known as junction
trees), making possible to perform inference (reasoning) in the networks very efficiently. For small and medium sized
networks, inference takes fractions of a second, and even for large networks it most often takes only a few seconds.

The HDE can be accessed through HUGIN Graphical User Interface, or it can be accessed from application programs
using one of the HUGIN Application Program Interfaces.

© Copyright 2020, HUGIN EXPERT A/S 5

HUGIN Graphical User Interface Documentation, Release 8.9

2.1.2 Application Program Interfaces

The HUGIN APIs (Application Program Interfaces) allow programmers can build knowledge-based applications, uti-
lizing the power of the HUGIN Decision Engine for reasoning. When used through one of the HUGIN APIs, the
HUGIN Decision Engine functions as an ordinary program library, giving the application programmer total control of
events.

The HUGIN APIs are currently available as C, C++, .NET/.Net Core, Java, Python, Web Service API and Visual Basic
on Windows via a COM interface.

You can download the HUGIN API reference manuals from the HUGIN web site.

HUGIN also offers APIs for Android and IOS. Please contact HUGIN at hugin@info.dk for more information.

2.1.3 The HUGIN Graphical User Interface

The HUGIN Graphical User Interface is used to create and maintain network models as well as executing them (en-
tering evidence and displaying resulting probability distributions and expected utilities). The HUGIN Graphical User
Interface can operate in two different modes: Edit Mode and Run Mode. In Edit Mode, nodes can be created and
linked, states and actions can be specified, and conditional probability tables and utility tables can be entered using a
window-, menu- and mouse driven interface. In Run Mode, beliefs and utilities for individual nodes can be displayed.
The user can enter evidence incrementally by selecting states/actions of individual nodes. The HUGIN Decision
Engine can then be engaged, propagating the information to obtain revised probabilities and expected utilities.

2.1.4 Extra Features

For extra performance gains, the HUGIN Decision Engine and compiler features a facility for compressing sparse
probability tables. This can save considerable space and likewise considerably increase performance. The compiler
and inference engine also features an option for approximating the probability tables to increase their scarcity. Com-
bined with the compression, this can have dramatic effects on performance, with negligible effects on end results.

2.2 Bayesian Network Technology in the HUGIN Development Envi-
ronment

This text provides you with an overview of Bayesian networks, LIMID models, and networks with conditional Gaus-
sian variables (also known as Bayesian networks). More detailed information on these and other issues can be found
in specialized sections and tutorials (page 15)

Probabilistic graphical models (of which Bayesian networks and LIMIDs are excellent examples) are especially suit-
able for domains with inherent uncertainty. Domain models based on Bayesian network technology can be built using
the HUGIN Graphical User Interface, an easy-to-use graphical user interface built on top of the Java API provided with
the HUGIN Developer package. Stand-alone applications using network technology can be built using the HUGIN
APIs (page 5), a series of C, C++, and Java libraries and an ActiveX server providing access to the facilities of the
HUGIN Decision Engine (HDE) for the application programmer.

Bayesian Networks

Bayesian networks are often used to model domains that are characterized by inherent uncertainty. (This uncertainty
can be due to imperfect understanding of the domain, incomplete knowledge of the state of the domain at the time
where a given task is to be performed, randomness in the mechanisms governing the behavior of the domain, or a
combination of these.)

Formally, a Bayesian network can be defined as follows:

6 © Copyright 2020, HUGIN EXPERT A/S

mailto:hugin@info.dk

HUGIN Graphical User Interface Documentation, Release 8.9

Definition (Bayesian Network) A Bayesian network is a directed acyclic graph with the following properties:

• Each node represents a random variable.

• Each node representing a variable A with parent nodes representing variables B1, B22,. . . , Bn is assigned a
conditional probability table (CPT):

𝑃 (𝐴|𝐵1, 𝐵2, ..., 𝐵𝑛)

The nodes represent random variables, and the edges represent probabilistic dependences between variables. These
dependences are quantified through a set of conditional probability tables (CPTs): Each variable is assigned a CPT
of the variable given its parents. For variables without parents, this is an unconditional (also called a marginal)
distribution.

Example 1

Figure 1: Graph representing structural aspects of medical knowledge concerning lung diseases.

Figure 1 shows a model for the following piece of fictitious medical knowledge:

“Shortness-of-breath (dyspnoea) [d] may be due to tuberculosis [t], lung cancer [l] or bronchitis [b], or none of them,
or more than one of them. A recent visit to Asia [a] increases the risk of tuberculosis, while smoking [s] is known to

be a risk factor for both lung cancer and bronchitis. The result of a single chest X-ray [x] does not discriminate
between lung cancer and tuberculosis, neither does the presence or absence of dyspnoea” (Lauritzen & Spiegelhalter

1988) (page 519).

The last fact is represented in the graph by the intermediate variable e. This variable is a logical-or of its two parents
(t and l); it summarizes the presence of one or both diseases or the absence of both.

An important concept for Bayesian networks is conditional independence. Two sets of variables, A and B, are said
to be (conditionally) independent given a third set C of variables if when the values of the variables C are known,
knowledge about the values of the variables B provides no further information about the values of the variables A:

𝑃 (𝐴|𝐵,𝐶) = 𝑃 (𝐴|𝐶)

Conditional independence can be directly read from the graph as follows: Let A, B, and C be disjoint sets of variables,
then

© Copyright 2020, HUGIN EXPERT A/S 7

HUGIN Graphical User Interface Documentation, Release 8.9

• identify the smallest sub-graph that contains A B C and their ancestors;

• add undirected edges between nodes having a common child;

drop directions on all directed edges.

Now, if every path from a variable in A to a variable in B contains a variable in C, then A is conditionally independent
of B given C (Lauritzen et al. 1990) (page 519).

Example 2

If we learn the fact that a patient is a smoker, we will adjust our beliefs (increased risks) regarding lung cancer and
bronchitis. However, our beliefs regarding tuberculosis are unchanged (i.e., t is conditionally independent of s given
the empty set of variables). Now, suppose we get a positive X-ray result for the patient. This will affect our beliefs
regarding tuberculosis and lung cancer, but not our beliefs regarding bronchitis (i.e., b is conditionally independent of
x given s). However, had we also known that the patient suffers from shortness-of-breath, the X-ray result would also
have affected our beliefs regarding bronchitis (i.e., b is not conditionally independent of x given s and d).

These (in)dependences can all be read from the graph of Figure 1 using the method described above.

Another, equivalent and very popular criterion for reading statements of conditional independence is d-separation
(page 271) (Pearl 1988) (page 519).

2.2.1 Inference

Inference in a Bayesian network means computing the conditional probability for some variables given information
(evidence) on other variables. This is easy when all available evidence is on variables that are ancestors of the vari-
able(s) of interest. But when evidence is available on a descendant of the variable(s) of interest, we have to perform
inference opposite the direction of the edges. To this end, we employ Bayes’ Theorem:

𝑃 (𝐴|𝐵) =
𝑃 (𝐴|𝐵)𝑃 (𝐴)

𝑃 (𝐵)

HUGIN inference is essentially a clever application of Bayes’ Theorem; details can be found in the paper by Jensen
et al. (1990(1)) (page 519).

2.2.2 Limited Memory Influence Diagrams

A LIMID is a Bayesian network augmented with decision and utility nodes (the random variables of a LIMID diagram
are often called chance variables). Edges into decision nodes indicate time precedence: an edge from a random variable
to a decision variable indicates that the value of the random variable is known when the decision will be taken, and an
edge from one decision variable to another indicates the chronological ordering of the corresponding decisions. The
network must be acyclic.

We are interested in making the best possible decisions for our application. We therefore associate utilities with the
state configurations of the network. These utilities are represented by utility nodes. Each utility node has a utility
function that to each configuration of states of its parents associates a utility. (Utility nodes do not have children). By
making decisions, we influence the probabilities of the configurations of the network. We can therefore compute the
expected utility of each decision alternative (the global utility function is the sum of all the local utility functions). We
shall choose the alternative with the highest expected utility; this is known as the maximum expected utility principle.

When we have observed the values of the variables that are parents of the first decision node in the LIMID, we want to
know the maximum expected utilities for the alternatives of this decision. The HUGIN Decision Engine will compute
these utilities on the assumption that all future decisions will be made in an optimal manner (using all available
evidence at the time of each decision). Similar considerations also apply to the remaining decisions.

The computational method underlying the implementation of LIMIDs in the HUGIN Decision Engine is described by
S. L. Lauritzen and D. Nilsson (2001) (page 519).

8 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Example 3

Figure 2: LIMID model for the oil wildcatters decision problem: T represents the decision whether or not to test; D
represents the decision whether to drill or not to drill; S represents the outcome of the seismic soundings test (if the
oil wildcatter decides to test); H represents the state of the hole; C represents the cost associated with the seismic
soundings test; and P represents the expected payoff associated with drilling.

An oil wildcatter must decide whether or not to drill. He is uncertain whether the hole is dry, wet, or soaking. At a
cost of $10,000, the oil wildcatter could take seismic soundings which will help determine the underlying geological
structure at the site. The soundings will disclose whether the terrain below has closed structure (good), open structure
(so-so), or no structure (bad).

The cost of drilling is $70,000. If the oil wildcatter decides to drill, the expected payoff (i.e., the value of the oil found
minus the cost of drilling) is $-70,000 if the hole is dry, $50,000 if the hole is wet, and $200,000 if the hole is soaking;
if the oil wildcatter decides not to drill, the payoff is (of course) $0.

The experts have estimated the following probability distribution for the state of the hole: P(dry)=0.5, P(wet)=0.3, and
P(soaking)=0.2. Moreover, the seismic soundings test is not perfect; the conditional probabilities for the outcomes of
the test given the state of the hole are:

Figure 3: CPT for the outcomes of the test

Figure 2 shows LIMID model for the oil wildcatters decision problem. Random variables are depicted as circles,
decision variables are depicted as squares, and utilities are depicted as diamonds.

On the basis of this LIMID, the HUGIN Decision Engine computes the utility associated with testing to be $22,500
and the utility associated with not testing to be $20,000. So the optimal strategy is to perform the seismic soundings
test, and then decide whether to drill or not to drill based on the outcome of the test.

[This example is due to Raiffa (1968) (page 519). A more thorough description of this example is found in the
Examples (page 495) section.]

© Copyright 2020, HUGIN EXPERT A/S 9

HUGIN Graphical User Interface Documentation, Release 8.9

2.2.3 Networks with Conditional Gaussian Variables

The HUGIN Decision Engine is able to handle networks with both discrete and continuous random variables. The
continuous random variables must have a Gaussian (also known as a normal) distribution conditional on the values of
the parents.

The distribution for a continuous variable Y with discrete parents I and continuous parents Z is a (one-dimensional)
Gaussian distribution conditional on the values of the parents:

𝑃 (𝑌 |𝐼 = 𝑖, 𝑍 = 𝑧) = 𝒩 (𝛼(⟩) + 𝛽(⟩)𝜏‡, 𝛾(⟩))

Note that the mean depends linearly on the continuous parent variables and that the variance does not depend on the
continuous parent variables. However, both the linear function and the variance are allowed to depend on the discrete
parent variables. These restrictions ensure that exact inference is possible.

Note that discrete variables cannot have continuous parents.

Example 4

Figure 3 shows a network model for a waste incinerator (Lauritzen 1992) (page 519):

“The emissions (of dust and heavy metals) from a waste incinerator differ because of compositional differences in
incoming waste [W]. Another important factor is the waste burning regimen [B], which can be monitored by

measuring the concentration of CO2 in the emissions [C]. The filter efficiency [E] depends on the technical state [F]
of the electrofilter and on the amount and composition of waste [W]. The emission of heavy metals [M:sub:`o`]

depends on both the concentration of metals [M:sub:`i`] in the incoming waste and the emission of dust particulates
[D] in general. The emission of dust [D] is monitored through measuring the penetrability of light [L].”

Figure 3: The structural aspects of the waste incinerator model: B, F, and W are discrete variables, while the remaining
variables are continuous.

The result of inference within a network model containing conditional Gaussian variables is - as always - the beliefs
(i.e., marginal distributions) of the individual variables given evidence. For a discrete variable this amounts to a
probability distribution over the states of the variable. For a conditional Gaussian variable two measures are provided:

1. the mean and variance of the distribution;

2. since the distribution is in general not a simple Gaussian distribution, but a mixture (i.e., a weighted sum) of
Gaussians, a list of the parameters (weight, mean, and variance) for each of the Gaussians is available.

10 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Example 5

From the network shown in Figure 3 (and given that the discrete variables B, F, and W are all binary), we see that

• the distribution for C can be comprised of up to two Gaussians (one if B is instantiated);

• initially (i.e., with no evidence incorporated), the distribution for E is comprised of up to four Gaussians;

• if L is instantiated (and none of B, F, or W is instantiated), then the distribution for E is comprised of up to eight
Gaussians.

2.3 Versions

There are various configurations1 of the HUGIN Development Environment. Overall they can be divided into two
categories: Commercial and Academic Licences. Furthermore, a popular free evaluation version with limited func-
tionality can be downloaded from our web site and an OEM version can be achieved for deployment in production
setups.

2.3.1 Commercial Versions

For Commercial users, two versions of the HUGIN Development Environment are available: HUGIN Explorer™2,
and HUGIN Developer™3. HUGIN Explorer comprises HUGIN Graphical User Interface that is an interactive Java-
based tool built on top of the HUGIN Java API, and thus enables you to use the facilities of the HDE for constructing,
manipulating, and evaluating models that can be used in other applications. HUGIN Developer™ comprises HUGIN
Graphical User Interface and one of the available Hugin APIs, and it is intended for developers using the HUGIN
Decision Engine (HDE) as part of custom-built applications. It provides access to all functions of the Decision Engine
through an API. HUGIN Explorer™ and HUGIN Developer both allow construction of Bayesian networks of any size,
limited only by the amount of virtual memory available. Neither version has limitations on the number of nodes or the
number of states of the nodes.

2.3.2 Academic Versions

The following two versions of the HUGIN Development Environment are targeting academic users: HUGIN Edu-
cational™4, and HUGIN Researcher™5. HUGIN Educational™ is targeting employees or students at an academic
facility who wish to learn about and utilize Bayesian network technology. It comprises HUGIN Graphical User In-
terface that is an interactive Java-based tool built on top of the HUGIN Java API, and thus enables students and
researchers to use the facilities of the HDE for constructing, manipulating, and evaluating models that can be used
in other applications. HUGIN Researcher™ is targeting employees or students at an academic facility who using
Bayesian network technology to build advanced applications for research purposes to be used for academic purposes.
It comprises the HUGIN Graphical User Interface and the HUGIN APIs, and it is intended for students and researchers
using the HUGIN Decision Engine (HDE) as part of their academic work. It provides access to all functions of the De-
cision Engine through an API. HUGIN Educational™ and HUGIN Researcher™ both allow construction of Bayesian
networks of any size, limited only by the amount of virtual memory available. Neither version has limitations on the
number of nodes or the number of states of the nodes.

1 https://www.hugin.com/index.php/products/
2 https://www.hugin.com/index.php/hugin-explorerhugin-educational//
3 https://www.hugin.com/index.php/hugin-developerhugin-researcher/
4 https://www.hugin.com/index.php/hugin-explorerhugin-educational/
5 https://www.hugin.com/index.php/hugin-developerhugin-researcher/

© Copyright 2020, HUGIN EXPERT A/S 11

https://www.hugin.com/index.php/products/
https://www.hugin.com/index.php/hugin-explorerhugin-educational//
https://www.hugin.com/index.php/hugin-developerhugin-researcher/
../../index.html
../../index.html
../../index.html
../HDE/Components.html
https://www.hugin.com/index.php/hugin-explorerhugin-educational/
https://www.hugin.com/index.php/hugin-explorerhugin-educational/
https://www.hugin.com/index.php/hugin-developerhugin-researcher/
../../index.html
../../index.html
../../index.html
../HDE/Components.html

HUGIN Graphical User Interface Documentation, Release 8.9

2.3.3 Free Evaluation Version

HUGIN Lite™ is a free version free version6 of HUGIN Developer™ for people who do not trust sales literature.
HUGIN Lite™ contains all the basic functionality of HUGIN Developer™, except for loading, construction, and
saving of models with more than 50 states, and a restriction to 500 cases when learning. HUGIN Lite™ is intended to
give an idea of the possibilities and facilities in HUGIN Developer™ and HUGIN Researcher™.

2.3.4 Deployment Licences

For clients who want to incorporate HUGIN technology into products or services an OEM agreement7 can be made
allowing the client to deploy the HUGIN APIs (page 5) in production environments.

2.3.5 Special HUGIN API Versions

The HUGIN Decision Engine is highly portable. This means that versions of the HUGIN API can be produced for
many types of machines and operating systems. If you have special requirements, or special machines you would like
to see supported, please contact HUGIN Expert A/S at info@hugin.com. If possible, we will be happy to produce
special HUGIN API versions on request.

2.4 System Requirements

To use the HUGIN Development Environment (if not a special version - see the Versions section (page 11)) you need:

• Windows: Microsoft Windows 7/8/10 (x86/x64)

• Linux: Red Hat Enterprise Linux 7, Ubuntu 18.04 LTS, and compatible distributions (x86/x64)

• macOS: macOS Mojave (10.14) (64-bit only)

The Java API and the Graphical User Interface requires Oracle’s JVM to run. On macOS, Oracle’s JVM is only
available in 64 bit.

2.4.1 Memory Requirements

The complexity (both in terms of space and time) of making inference in a Bayesian network or a LIMID model can
be quite large. For most applications, however, the complexity is moderate.

The time and memory required for making inference depends on the number of variables, the number of states of the
variables, and the structure of the network. Among these three factors, it is the structure of the network that is the most
important. As an example, an early version of the TREAT network (a decision support system for treatment of severe
bacterial infections) developed at Aalborg University contains more than 1400 variables, but still requires less than
2 Mbytes of memory (using optimal triangulation). On the other hand, one can easily construct networks with less
than 50 variables where the complexity of inference gets prohibitive. Note that by using the compression (page 123)
and approximation (page 124) facilities of the HUGIN compiler, memory requirements can be vastly reduced. Also,
using the optimal triangulation feature (page 124) when compiling a network can be very useful in minimizing the
complexity of inference.

Please note that the memory requirements mentioned above assume that we are using the standard single-precision
HUGIN API. (Using the double-precision version will double that amount.) If we are using the HUGIN Graphical

6 https://www.hugin.com/index.php/hugin-lite/
7 https://www.hugin.com/index.php/hugin-oem/

12 © Copyright 2020, HUGIN EXPERT A/S

https://www.hugin.com/index.php/hugin-lite/
https://www.hugin.com/index.php/hugin-oem/
mailto:info@hugin.com

HUGIN Graphical User Interface Documentation, Release 8.9

User Interface, there will also be a memory overhead from running Java and representing the variables as Java objects,
etc.

In most cases, when our customers experience problems with lack of memory, the problems were caused by inappro-
priate structures in the models which could be solved by optimizing the representation.

See the section on junction trees (page 237) for a more detailed discussion of how inference is performed and what
causes the potential high complexity.

2.4.2 Application Programming Interfaces

Application Programming Interfaces (APIs) for the HUGIN Decision Engine (HDE) are provided for the C, C++, Java,
Python, and C# (.NET Core 2.0) programming languages for all supported platforms (Windows, Linux, and macOS).
Additionally, a web service API is provided for all supported platforms.

For the Microsoft Windows platform, APIs for C# (.NET Framework 2.0 and 4.0) and Excel (COM) are also provided.

For macOS and iOS, library frameworks for the Swift programming language are provided.

For the Microsoft Windows platform, DLLs for C/C++ are provided for use with Visual Studio 6.0, Visual Studio
.NET 2003, Visual Studio 2005, Visual Studio 2008, Visual Studio 2010, Visual Studio 2012, Visual Studio 2013,
Visual Studio 2015, Visual Studio 2017, and Visual Studio 2019.

For the Linux platform, two software packages are available: One compiled on Red Hat Enterprise Linux 7 (RHEL7),
and one compiled on Ubuntu 18.04 LTS (64-bit only). Most Linux software distributions should be compatible with
at least one of these packages. If you experience problems, please contact HUGIN Expert A/S.

The packages have been compiled using the default system compiler. For RHEL7, this is gcc/g++ 4.8.5, and for
Ubuntu 18.04 LTS, this is gcc/g++ 7.4.0. The APIs may not work with other compilers (including the version of the
compiler). This is most likely to be the case for the HUGIN C++ API.

For macOS/iOS, all libraries have been compiled using Xcode 10.3.

The HUGIN Java API is compatible with Java 1.4.2 and newer versions from Oracle.

The HUGIN Web Service API requires Java 8 or newer on the server.

The HUGIN Python API works with Python 2.7 and Python 3.x.

If you have special requirements (e.g., operating systems, compilers, or hardware) you would like to see supported,
please contact HUGIN Expert A/S. If possible, we will be happy to produce special HUGIN API versions on request.

Upon taking any version of the HUGIN software into use, you automatically agree to the terms of the HUGIN Software
License Agreement (below).

2.5 HUGIN Software License Agreement

HUGIN Expert A/S, hereinafter called “HUGIN”, and the organization/institution specified in the order form, here-
inafter called “LICENSEE”, agree that the following terms and conditions will apply to the use of the computer soft-
ware product specified in the order form, hereinafter called “HUGIN SOFTWARE”, a copy of which is being supplied
by HUGIN to LICENSEE.

1. Grant. HUGIN provides HUGIN SOFTWARE to LICENSEE and grants to LICENSEE a non-exclusive and non-
transferable right to use this software. No license, right or interest in any trademark, trade name or service mark of
HUGIN SOFTWARE or any third party from whom HUGIN SOFTWARE has acquired such license rights are granted
under this License. HUGIN SOFTWARE should be used by the LICENSEE only on a computer system owned, leased
or operated by the LICENSEE. The maximum number of simultaneous users for HUGIN SOFTWARE shall be as
specified in the order form.

© Copyright 2020, HUGIN EXPERT A/S 13

HUGIN Graphical User Interface Documentation, Release 8.9

2. Term. This Agreement shall become effective upon its acceptance by the authorized representatives of HUGIN and
LICENSEE. The Agreement shall remain in effect in perpetuity, except that HUGIN may discontinue the license or
terminate the Agreement if LICENSEE fails to comply with any terms or conditions thereof.

3. Charges. Within thirty (30) days of the effective date of this Agreement, LICENSEE shall pay HUGIN the charge
specified in HUGIN’s current Price Schedule. LICENSEE shall also pay sales taxes if applicable.

4. Restricted Use. LICENSEE agrees to maintain HUGIN SOFTWARE source code and object code in confidence
and will not make HUGIN SOFTWARE or any derivative thereof available for any use whatsoever in any form to any
other individual or firm. LICENSEE agrees to take appropriate action by instruction, agreement or otherwise with
all persons permitted access to HUGIN SOFTWARE or any derivative thereof to satisfy LICENSEE’s protection and
security obligations under this Agreement. LICENSEE may take additional copies, in whole or in part, of HUGIN
SOFTWARE as necessary and incidental to its use in compliance with this Agreement, such as for archival and back-
up purposes, provided that each such copy, in whole or in part, shall remain subject to all terms of this Agreement.
LICENSEE shall not disassemble or decompile the HUGIN SOFTWARE.

5. Non-Assignment. Under no circumstances shall this Agreement or any of the rights granted to LICENSEE hereun-
der be sold, assigned or sub-licensed, voluntarily or by operation by law, to any other person or entity, and any such
purported sale, assignment or sub-license shall be void. The API that ships together with the HUGIN SOFTWARE
has a tight link to the installation of these packages. It’s not possible to use the API’s on another computer unless the
whole package is installed. To be able to distribute applications using the HUGIN API a HUGIN OEM License is
imperative. Please contact HUGIN Expert A/S for further information on the HUGIN OEM license.

6. Warranty. HUGIN SOFTWARE is provided without warranty of any kind, either expressed or implied, includ-
ing without limitation implied warranties or merchantability and fitness for a particular purpose. HUGIN disclaims
any responsibility for ease of installation, accuracy, completeness or correctness of HUGIN SOFTWARE. HUGIN
does not warrant that HUGIN SOFTWARE will meet LICENSEE’s requirements or that operations involving HUGIN
SOFTWARE will be uninterrupted or error free.

7. Applicable Law. This Agreement shall be governed by, subject to and interpreted in accordance with Danish law,
and LICENSEE and HUGIN shall submit to the jurisdiction of the Danish court.

14 © Copyright 2020, HUGIN EXPERT A/S

CHAPTER

THREE

TUTORIALS

A number of tutorials are provided to help you getting acquainted with the HUGIN technology and with the HUGIN
Graphical User Interface. There is one section of tutorials that introduce some basic concepts, and another that presents
some more advanced features of the HUGIN Graphical User Interface.

3.1 Basic Concepts

• The Paradigms Tutorial (page 16) presents the three main paradigms for expert systems: Rule-based systems,
Neural networks, and Bayesian networks.

• The Bayesian Networks Tutorial (page 19) describes the basic properties of Bayesian networks, and is recom-
mended if you have no or little prior knowledge about Bayesian networks.

• The How to Build BNs Tutorial (page 26) provides a step-by-step guide to constructing a Bayesian network
using the HUGIN Graphical User Interface.

• The Limited Memory Influence Diagrams Tutorial (page 36) describes the basic properties of limited memory
influence diagrams, and is recommended if you have no or little prior knowledge about limited memory influence
diagrams (LIMIDs).

• The How to Build LIMIDs Tutorial (page 44) provides a step-by-step guide to constructing a LIMID using the
HUGIN Graphical User Interface.

• The Object Orientation Tutorial (page 50) describes the basic properties of object-oriented Bayesian networks
and LIMIDs, and is recommended if you have no or little prior knowledge about this subject.

• The How to Build OOBNs Tutorial (page 55) provides a step-by-step guide to constructing an object-oriented
Bayesian network using the HUGIN Graphical User Interface.

3.2 Learning More

• The Node Table Tutorial (page 62) explains the functionalities of node tables.

• The Table Generator Tutorial (page 72) shows how to specify simple expressions for large tables and then let
the built-in table generator do all the hard work of filling in the numbers of the table.

• The Case and Data File Formats Tutorial (page 85) describes how data for learning may be specified as case
and data files.

• The Structure Learning Tutorial (page 95) describes how Bayesian networks can be constructed automatically
from data.

• The EM Learning Tutorial (page 103) describes how the probabilities (parameters) of Bayesian networks can
be learned automatically from data.

© Copyright 2020, HUGIN EXPERT A/S 15

HUGIN Graphical User Interface Documentation, Release 8.9

• The Adaptation Tutorial (page 109) explains how the probabilities specified for Bayesian networks can be
automatically updated from experience (i.e., evidence) such that, for example, the networks adapt to changing
conditions its environment.

• The Case Generator Tutorial (page 86) explains how to generate simulated cases from a Bayesian network.

3.2.1 Paradigms of Expert Systems

Section author: By Finn V. Jensen, Dept. of Computer Science, Aalborg University, Denmark

This is a brief overview of the three main paradigms of expert systems.

Rule-Based Systems

A rule is an expression of the form

if A then B

where A is an assertion and B can be either an action or another assertion. For instance, the following three rules could
be part of a larger set of rules for troubleshooting water pumps:

1. If pump failure then the pressure is low

2. If pump failure then check oil level

3. If power failure then pump failure

A rule-based system consists of a library of such rules. These rules reflect essential relationships within the domain,
or rather: they reflect ways to reason about the domain.

When specific information about the domain becomes available, the rules are used to draw conclusions and to point
out appropriate actions. This is called inference. The inference takes place as a kind of chain reaction. In the above
example, if you are told that there is a power failure, Rule 3 will state that there is a pump failure and Rule 1 will then
tell us that the pressure is low. Rule 2 will also give a (useless) recommendation to check the oil level.

Rules can also be used in the opposite direction. Suppose you are told that the pressure is low; then Rule 1 states that
it can be due to a pump failure, while Rule 3 states that a pump failure can be caused by a power failure. You should
also be able to use Rule 2 to recommend checking the oil level, but it is very difficult to control such a mixture of
inference back an forth in the same session.

Uncertainty

Often the connections reflected by the rules are not absolutely certain, and also the gathered information is often
subject to uncertainty. In such cases, a certainty measure is added to the premises as well as to the conclusions in the
rules of the system. Now, a rule gives a function that describes how much a change in the certainty of the premise will
change the certainty of the conclusion. In its simplest form, this looks like:

4. If A (with certainty x) then B (with certainty f(x))

There are many schemes for treating uncertainty in rule-based systems. The most common are fuzzy logic, certainty
factors, and (adapted versions of) Dempster-Shafer belief functions. Common to all of these schemes is that uncertainty
is treated locally. That is, the treatment is connected directly to the incoming rules and the uncertainty of their elements.
Imagine, for example, that in addition to Rule 4 we have the rule

5. If C (with certainty x) then B (with certainty g(x))

16 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

If we now get the information that A holds with certainty a and C holds with certainty c, what is then the certainty of
B?

There are different algebras for such a combination of uncertainties, depending on the scheme. Common to all these
algebras is that in many cases they come to incorrect conclusions. This is because the combination of uncertainty is
not a local phenomenon, but it is strongly dependent on the entire situation (in principle a global matter).

Neural Networks

(Only the so-called feed-forward networks are treated.)

A neural network consists of several layers of nodes: At the top there is a layer of input nodes, at the bottom a layer
of output nodes, and in between these normally 1 or 2 hidden layers. Except for the output nodes, all nodes in a layer
are in principle connected to all nodes in the layer immediately below. A node along with its in-going edges is called
a perceptron.

A neural network performs pattern recognition. You could for instance imagine a neural network that reads handwrit-
ten letters. By automatic tracking, a handwritten letter can be transformed into a set of findings on curves (not a job
for the network). The network will have an input node for every possible kind of finding and an output node for each
letter in the alphabet. When a set of findings is fed into the network, the system will match the pattern of findings with
equivalent patterns of the different letters.

Technically, the input nodes are given a value (0 or 1). This value is transmitted to the nodes in the next layer. Each
of these nodes perform a weighted sum of the incoming values, and if this sum is greater than a certain threshold, the
node fires downward with the value 1. The values of the output nodes determine the letter.

So, apart from the architecture of the network (the number of layers and the number of nodes in each layer), the weights
and the thresholds determine the behavior of the network. Weights and thresholds are set in order for the network to
perform as well as possible. This is achieved by training: You have a large number of examples where both input
values and output values are known. These are then fed into the training algorithm of the network. This algorithm
determines weights and thresholds in such a way that the distance between the set of outputs from the network and the
desired sets of outputs from the examples gets as small as possible.

There is nothing preventing the use of neural networks for domains requiring the handling of uncertainty. If relations
are uncertain (for example in medical diagnosis), a neural network with the proper training will be able to give the most
probable diagnosis given a set of symptoms. However, you will not be able to read the uncertainty of the conclusion
from the network, you will not be able to get the next-most probable diagnosis and - probably the most severe set-back
- you will not know under which assumptions about the domain the suggested diagnosis is the most probable.

Bayesian Networks

Bayesian networks are also called Bayes nets, causal probabilistic networks (CPNs), Bayesian belief networks (BNs),
or belief networks.

A Bayesian network consists of a set of nodes and a set of directed edges between these nodes. Edges reflect cause-
effect relations within the domain. These effects are normally not completely deterministic (e.g. disease -> symptom).
The strength of an effect is modeled as a probability:

6. If tonsillitis then P(temp>37.9) = 0.75

7. If whooping cough then P(temp>37.9) = 0.65

One could be led to read these statements as rules. They shouldn’t. So, a different notation is used:

P(temp>37.9 | whooping cough) = 0.65

If 6. and 7. are read as ‘If otherwise healthy and..then..’, there also needs to be a specification of how the two
causes combine. That is, we need the probability of having a fever if both symptoms are present and if the patient is
completely healthy. All in all you have to specify the conditional probabilities:

© Copyright 2020, HUGIN EXPERT A/S 17

HUGIN Graphical User Interface Documentation, Release 8.9

P(temp>37.9 | whooping cough, tonsillitis),

Where ‘whooping cough’ and ‘tonsillitis’ each can take the states ‘yes’ and ‘no’. So, you must for any node specify
the strength of all combinations of states for the possible causes.

Fundamentally, Bayesian networks are used to update probabilities whenever information becomes available. The
mathematical basis for this is Bayes’ theorem:

P(A | B) P(B) = P(B | A) P(A)

Contrary to the methods of rule-based systems, the updating method of Bayesian networks uses a global perspective,
and if model and information are correct, it can be proved that the method computes the updated probabilities correctly
(correctly regarding the axioms of the classical probability theory).

Any node in the network can receive information as the method doesn’t distinguish between inference in or opposite
to the direction of the edges. Also, simultaneous input of information into several nodes will not affect the updating
algorithm.

An essential difference between rule-based systems and systems based on Bayesian networks is that in rule based
systems you try to model the expert’s way of reasoning (hence the name expert systems), while with Bayesian networks
you try to model dependences in the domain itself. Systems of the latter type are often called decision support systems
or normative expert systems.

Comparing Neural Networks and Bayesian Networks

The fundamental difference between the two types of networks is that a perceptron in the hidden layers does not
in itself have an interpretation in the domain of the system, whereas all the nodes of a Bayesian network represent
concepts that are well defined with respect to the domain.

The meaning of a node and its probability table can be subject to discussion, regardless of their function in the network.
But it does not make any sense to discuss the meaning of the nodes and the weights in a neural network. Perceptrons
in the hidden layers only have a meaning in the context of the functionality of the network.

This means that the construction of a Bayesian network requires detailed knowledge of the domain in question. If such
knowledge can only be obtained through a series of examples (i.e., a data base of cases), neural networks seem to be
an easier approach. This might be true in cases such as the reading of handwritten letters, face recognition, and other
areas where the activity is a ‘craftsman like’ skill based solely on experience.

It is often criticized that in order to construct a Bayesian network you have to ‘know’ too many probabilities. However,
there is not a considerable difference between this number and the number of weights and thresholds that have to be
‘known’ in order to build a neural network, and these can only be learnt by training. It is an enormous weakness of
neural networks that you are unable to utilize the knowledge you might have in advance.

Probabilities, on the other hand, can be assessed using a combination of theoretical insight, empiric studies independent
of the constructed system, training, and various more or less subjective estimates.

Finally, it should be mentioned that in the construction of a neural network the route of inference is fixed. It is decided
in advance, about which relations information is gathered, and which relations the system is expected to compute.
Bayesian networks are much more flexible in that respect.

18 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

3.2.2 Introduction to Bayesian Network

A Bayesian network (BN) is used to model a domain containing uncertainty in some manner. This uncertainty can be
due to imperfect understanding of the domain, incomplete knowledge of the state of the domain at the time where a
given task is to be performed, randomness in the mechanisms governing the behavior of the domain, or a combination
of these.

Bayesian networks are also called belief networks and Bayesian belief networks. Previously, the term causal prob-
abilistic networks has also been used. A BN is a network of nodes connected by directed links with a probability
function attached to each node. The network (or graph) of a BN is a directed acyclic graph (DAG), i.e., there is no
directed path starting and ending at the same node.

A node represents either a discrete random variable with a finite number of states or a continuous (Gaussian distributed)
random variable. Throughout this document, the terms “variable” and “node” are used interchangeably. The links
between the nodes represent (causal) relationships between the nodes.

If a node doesn’t have any parents (i.e., no links pointing towards it), the node will contain a marginal probability
table. If the node is discrete, it contains a probability distribution over the states of the variable that it represents. If
the node is continuous, it contains a Gaussian density function (given through mean and variance parameters) for the
random variable it represents.

If a node do have parents (i.e., one or more links pointing towards it), the node contains a conditional probability table
(CPT). If the node is discrete, each cell in the CPT (or, in more general terms, the conditional probability function
(CPF)) of a node contains a conditional probability for the node being in a specific state given a specific configuration
of the states of its parents. Thus, the number of cells in a CPT for a discrete node equals the product of the number
of possible states for the node and the product of the number of possible states for the parent nodes. If the node is
continuous, the CPT contains a mean and a variance parameter for each configuration of the states of its discrete parents
(one if there are no discrete parents) and a regression coefficient for each continuous parent for each configuration of
the states of the discrete parents.

The following example tries to make all this more concrete.

The Apple Tree Example

The problem domain of this example is a small orchard belonging to Jack Fletcher (let’s call him Apple Jack). One
day Apple Jack discovers that his finest apple tree is losing its leaves. Now, he wants to know why this is happening.
He knows that if the tree is dry (caused by a drought) there is no mystery - it is very common for trees to lose their
leaves during a drought. On the other hand the losing of leaves can be an indication of a disease.

The situation can be modeled by the BN in Figure 1. The BN consists of three nodes: Sick, Dry, and Loses which can
all be in one of two states: Sick can be either “sick” or “not” - Dry can be either “dry” or “not” - and Loses can be
either “yes” or “no”. The node Sick tells us that the apple tree is sick by being in state “sick”. Otherwise, it will be
in state “not”. The nodes Dry and Loses tell us in the same way if the tree is dry and if the tree is losing its leaves,
respectively.

© Copyright 2020, HUGIN EXPERT A/S 19

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: BN representing the domain of the Apple Jack problem.

The BN in Figure 1 models the causal dependence from Sick to Loses and from Dry to Loses. This is represented by
the two links.

When there is a causal dependence from a node A to another node B, we expect that when A is in a certain state this
has an impact on the state of B. One should be careful when modeling the causal dependences in a BN. Sometimes it
is not quite obvious in which direction a link should point. In our example, for instance, we say that there is a causal
link from Sick to Loses because when a tree is sick this might cause the tree to lose its leaves. But couldn’t one say
that when the tree loses its leaves it might be sick and then turn the link in the other direction? No, we cannot! It is the
sickness that causes the lost leaves and not the lost leaves that cause the sickness.

In Figure 1, we have the graphical representation of the BN. However, this is only what we call the qualitative repre-
sentation of the BN. Before we can call it a BN, we need to specify the quantitative representation.

The quantitative representation of a BN is the set of CPTs of the nodes. Tables 1, 2, and 3 show the CPTs of the three
nodes in the BN of Figure 1.

Tabel 1: P(Sick)

Tabel 2: P(Dry)

Tabel 3: P(Loses | Sick, Dry)

20 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Note that all three tables show the probability of a node being in a specific state depending on the states of its parent
nodes but since Sick and Dry do not have any parent nodes, the distributions in Tables 1 and 2 are not conditioned on
anything.

BNs that are concerned with the causal relations between variables at a given instance, such as the one described
above, are sometimes known as Static Bayesian Networks (SBNs). SBNs are concerned only with the current situation
and do not explicitly model temporal sequences, i.e. the past is ignored and the future is not predicted. For example, in
Figure 2, there are two diseases (D1 and D2) which can cause different symptoms (S1 and S2). Using the information
at hand on the symptoms makes it possible to predict the probabilities of each disease.

Figure 2: An example of Static Bayesian Network (SBN).

In many problem domains, such as the medical situation considered above, it is almost inconceivable to represent data
and reason about them without using a temporal dimension, since things evolve through time. SBNs, like the one
represented in Figure 2, can’t be used for such systems and thus the network has to be expanded to include temporal
information. Such networks are known as Dynamic Bayesian Networks (DBN). The simplest way to extend an SBN
into a DBN is by including multiple instances (time slices) of the SBN and linking these together. For example, the
network in Figure 3 is obtained by linking multiple instances of the network in Figure 2.

© Copyright 2020, HUGIN EXPERT A/S 21

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: An example of Dynamic Bayesian Network (DBN).

The existence of a disease today will have an effect on whether or not the disease will be there tomorrow. Therefore
there should be a link between the nodes representing “disease today” (nodes D1 and D2) and “disease tomorrow”
(nodes D1* and D2*). Using this new network, it is possible to predict the progress of the diseases.

What was shown in the above examples is a description of how to construct very simple BNs. When we have con-
structed a network, we can use it for entering evidence in some of the nodes where the state is known and then retrieve
the new probabilities computed in other nodes given this evidence. In the Apple Tree example, suppose we know that
the tree is losing its leaves. We then enter this evidence by selecting the state “yes” in the Loses node. Then we can
read the probability of the tree being sick as the probability of the node Sick being in state “sick” and the probability
of the tree being dry as the probability of the node Dry being in state “dry”.

Computing the probabilities of other variables given some evidence, like the situations described above is known as
Belief Updating. Another piece of information that might be interesting to find is the most likely global assignment of
the states of all random variables given some evidence. This is know as Belief Revision.

HUGIN provides you with a tool to construct such networks. After constructing the BNs, you can do belief revision,
belief updating, and much more. If you are in the process of learning more about the HUGIN Development Environ-
ment, now would be a good time to go through the How to Build BNs (page 26) tutorial. Here, the Apple Tree BN
is constructed using the HUGIN Graphical User Interface. You can also go on reading the Introduction to Object-
Oriented Networks (page 50); for example, object-oriented networks are very helpful when constructing networks
with repetitive structures like in the diseases network above. Or you might wish to go on reading the Introduction to
Influence Diagrams (IDs) (page 44); IDs are BNs extended with utility nodes and decision nodes.

22 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Definition of Bayesian Networks

Formally, a Bayesian network can be defined as follows: A Bayesian network is a pair (G,P), where G=(V,E) is a
directed acyclic graph (DAG) over a finite set of nodes (or vertices), V, interconnected by directed links (or
edges), E, and P is a set of (conditional) probability distributions. The network has the following property:

• Each node representing a variable A with parent nodes representing variables B1, B2,. . . , Bn (i.e., Bi,→ A
for each i=1,. . . ,n) is assigned a conditional probability table (CPT) representing P(A | B1, B2, . . . , Bn).

The nodes represent random variables, and the links represent probabilistic dependences between variables. These
dependences are quantified through a set of conditional probability tables (CPTs): Each variable is assigned a CPT
of the variable given its parents. For variables without parents, this is an unconditional (also called a marginal)
distribution.

Conditional Independence

An important concept for Bayesian networks is conditional independence. Two sets of variables, A and B, are said
to be (conditionally) independent given a third set C of variables if when the values of the variables C are known,
knowledge about the values of the variables B provides no further information about the values of the variables A:

𝑃 (𝐴|𝐵,𝐶) = 𝑃 (𝐴|𝐶)

Conditional independence can be directly read from the graph as follows: Let A, B, and C be disjoint sets of variables,
then

• identify the smallest sub-graph that contains 𝐴 ∪𝐵 ∪ 𝐶 and their ancestors;

• add undirected edges between nodes having a common child;

• drop directions on all directed edges.

Now, if every path from a variable in A to a variable in B contains a variable in C, then A is conditionally independent
of B given C (Lauritzen et al. 1990) (page 519).

To illustrate this concept, let us consider the following fictitious piece of fictitious medical knowledge

“Shortness-of-breath (dyspnoea) [d] may be due to tuberculosis [t], lung cancer [l] or bronchitis [b], or none of them,
or more than one of them. A recent visit to Asia [a] increases the risk of tuberculosis, while smoking [s] is known to

be a risk factor for both lung cancer and bronchitis. The result of a single chest X-ray [x] does not discriminate
between lung cancer and tuberculosis, neither does the presence or absence of dyspnoea” (Lauritzen & Spiegelhalter

1988) (page 519).

The last fact is represented in the graph by the intermediate variable e. This variable is a logical-or of its two parents
(t and l); it summarizes the presence of one or both diseases or the absence of both.

Figure 4 shows a model for the knowledge.

© Copyright 2020, HUGIN EXPERT A/S 23

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: Graph representing structural aspects of medical knowledge concerning lung diseases.

If we learn the that a patient is a smoker, we will adjust our beliefs (increased risks) regarding lung cancer and
bronchitis. However, our beliefs regarding tuberculosis are unchanged (i.e., t is conditionally independent of s given
the empty set of variables). Now, suppose we get a positive X-ray result for the patient. This will affect our beliefs
regarding tuberculosis and lung cancer, but not our beliefs regarding bronchitis (i.e., b is conditionally independent of
x given s). However, had we also known that the patient suffers from shortness-of-breath, the X-ray result would also
have affected our beliefs regarding bronchitis (i.e., b is not conditionally independent of x given s and d).

These (in)dependences can all be read from the graph of Figure 1 using the method described above.

Another, equivalent method to determine conditional independence is d-separation (page 271)., due to Pearl (1988)
(page 519)..

Inference

Inference in a Bayesian network means computing the conditional probability for some variables given information
(evidence) on other variables.

This is easy when all available evidence is on variables that are ancestors of the variable(s) of interest. But when
evidence is available on a descendant of the variable(s) of interest, we have to perform inference opposite the direction
of the edges. To this end, we employ Bayes’ Theorem:

𝑃 (𝐴|𝐵) =
𝑃 (𝐵|𝐴)𝑃 (𝐴)

𝑃 (𝐵)

HUGIN inference is essentially a clever application of Bayes’ Theorem; details can be found in the paper by Jensen
et al. (1990(1)) (page 519)..

24 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Networks with Conditional Gaussian Variables

The HUGIN Decision Engine is able to handle networks with both discrete and continuous random variables. The
continuous random variables must have a Gaussian (also known as a normal) distribution conditional on the values of
the parents.

The distribution for a continuous variable Y with discrete parents I and continuous parents Z is a (one-dimensional)
Gaussian distribution conditional on the values of the parents:

𝑃 (𝑌 |𝐼 = 𝑖, 𝑍 = 𝑧) = 𝒩 (𝛼(⟩) + 𝛽(⟩)𝜏‡, 𝛾(⟩))

Note that the mean depends linearly on the continuous parent variables and that the variance does not depend on the
continuous parent variables. However, both the linear function and the variance are allowed to depend on the discrete
parent variables. These restrictions ensure that exact inference is possible.

Note that discrete variables cannot have continuous parents.

Figure 5 shows a network model for a waste incinerator (Lauritzen 1992 (page 519)):

“The emissions (of dust and heavy metals) from a waste incinerator differ because of compositional differences in
incoming waste [W]. Another important factor is the waste burning regimen [B], which can be monitored by

measuring the concentration of CO2 in the emissions [C]. The filter efficiency [E] depends on the technical state [F]
of the electro filter and on the amount and composition of waste [W]. The emission of heavy metals [Mo] depends on
both the concentration of metals [Mi] in the incoming waste and the emission of dust particulates [D] in general. The

emission of dust [D] is monitored through measuring the penetrability of light [L].”

Figure 5: The structural aspects of the waste incinerator model: B, F, and W are discrete variables, while the remaining
variables are continuous.

The result of inference within a network model containing conditional Gaussian variables is - as always - the beliefs
(i.e., marginal distributions) of the individual variables given evidence. For a discrete variable this amounts to a
probability distribution over the states of the variable. For a conditional Gaussian variable two measures are provided:

1. the mean and variance of the distribution;

2. since the distribution is in general not a simple Gaussian distribution, but a mixture (i.e., a weighted sum) of
Gaussians, a list of the parameters (weight, mean, and variance) for each of the Gaussians is available.

From the network shown in Figure 5 (and given that the discrete variables B, F, and W are all binary), we see that

© Copyright 2020, HUGIN EXPERT A/S 25

HUGIN Graphical User Interface Documentation, Release 8.9

• the distribution for C can be comprised of up to two Gaussians (one if B is instantiated);

• initially (i.e., with no evidence incorporated), the distribution for E is comprised of up to four Gaussians;

• if L is instantiated (and none of B, F, or W is instantiated), then the distribution for E is comprised of up to eight
Gaussians.

See also the section on Gaussian distribution functions for details on how to specify a conditional Gaussian distribution
function using the HUGIN Graphical User Interface.

To learn how to build a Bayesian network using the HUGIN Graphical User Interface, please consult the tutorial How
to Build BNs (page 26).

3.2.3 How to Build a Bayesian Network

This tutorial shows you how to implement a small Bayesian network in the Hugin Graphical User Interface. The
network we are about to implement is the one modeled in the Apple Tree example in the Bayesian Networks Tutorial
(page 19).

The qualitative representation of our network is shown in Figure 1.

Figure 1: Bayesian network representing the Apple Tree problem.

If you want to understand the design of this network, you should read about it in the Bayesian Networks Tutorial
(page 19).

Constructing a New Network

When you choose to start up the HUGIN Graphical User Interface, the Main HUGIN Window (or simply the Main
Window) opens. This window contains a menu bar (called the Main Window Menu Bar), a tool bar (called the Main
Window Tool Bar), and a document pane (called the Main Window Document Pane or simply the Document Pane).
In the Document Pane, a new empty network called “unnamed1” is automatically opened in a network window (see
Figure 2). It starts up in Edit Mode which allows you to start constructing the network immediately (the other main
mode is Run Mode which allow you to use the network).

26 © Copyright 2020, HUGIN EXPERT A/S

pages/manual/GaussianDistributionFunction.html

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The network window containing a Tool Bar, a Tables Pane, and a Network Pane.

Adding Nodes

The first thing we will do is add the Sick node. This can be done as follows:

• Select the Discrete Chance Tool in the Tool Bar of the “unnamed1” network window (see Figure 3).

• Click somewhere in the Network Pane (see Figure 2).

When we have clicked in the Network Pane, a node labeled “C1” appears. We want to change this label to “Sick”:

• Select the node with the mouse cursor.

• Enter “Node Properties” by pressing the node properties tool (see Figure 3).

• Change both the “Name” and the “Label” fields to “Sick”.

• Press the “OK” button.

The “Name” is the internal name of the node while “Label” is the label of the node. If no label is specified (as was the
case before we changed the label) the label used is the internal name. The internal name can consist of only the letters
‘a’-‘z’ and ‘A’-‘Z’, the digits ‘0’-‘9’, and the underscore character ‘_’ while the label can be almost anything. Please
note that the first character of the name must be a letter.

• : The Discrete Chance tool

• : The Node Properties tool

© Copyright 2020, HUGIN EXPERT A/S 27

HUGIN Graphical User Interface Documentation, Release 8.9

• : The Link tool

The Dry and Loses nodes are added the same way. We can add more nodes without having to press the Discrete
Chance Tool all the time by holding down the SHIFT key while clicking in the Network Pane. When we have chosen
a node in the Network Pane, we can access the node properties tool by holding down the right mouse button.

Figure 4: The Network pane contains the three nodes Sick, Dry, and Loses that have been added to the network.

Adding Links

Now, we have a network similar to the one shown in the Network Pane in Figure 4. To add the links from Sick to
Loses and from Dry to Loses, do as follows:

• Press the Link Tool (see Figure 3).

• Drag a link from Sick to Loses with the left mouse button while holding down the SHIFT key. The SHIFT key
ensures that we can add more links without having to press the Link Tool again.

• Drag a link from Dry to Loses with the left mouse button.

What we have now is the complete qualitative representation which is similar to the one in Figure 1. The next step
will be to specify the states and the conditional probability table (CPT) of each node.

The States

In the introduction to BNs (page 19) the states of the nodes were specified as follows: Sick has two states: “sick” and
“not”, Dry has two states: “dry” and “not”, and Loses has two states “yes” and “no”.

First, we open the Tables Pane by clicking the tables-pane button.

28 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 5: The CPT is opened by pressing the left mouse button over a node, while holding down the “ctrl” button.

Next, we specify the states of Sick:

• Hold down the “ctrl” button while clicking the left mouse button over the node “Sick” to display its CPT in the
Tables Pane, as shown in Figure 5.

• Click the field containing the text “State 1” in the CPT in the Tables Pane.

• Type the text “sick” in the field to give the state this name.

• Click the field containing the text “State 2” in the CPT.

• Type the text “not” in the field.

Now, do the same with Dry.

We can do exactly the same with Loses. Beware that the CPT of Loses is a little bigger than those of Sick and Dry.
This is just because Loses has parent nodes (Sick and Dry don’t).

• Name the two states of Loses “yes” and “no”.

© Copyright 2020, HUGIN EXPERT A/S 29

HUGIN Graphical User Interface Documentation, Release 8.9

Entering CPT Values

The next step is to enter the CPT values correctly (as default, the Hugin Graphical User Interface has given all nodes
a uniform distribution). The values were specified in the introduction to BNs (page 19) and they are shown in Tables
1, 2, and 3.

Tabel 1: P(Sick)

Tabel 2: P(Dry)

Tabel 3: P(Loses | Sick, Dry)

First, we select all three nodes (shortcut: Ctrl+A) to get the CPTs displayed in the Tables Pane. Next, we enter the
values into the Sick node:

• Click the field representing Sick=”sick”.

• Enter the value 0.1 (from Table 1).

• Click the field representing Sick=”not”.

• Enter the value 0.9 (from Table 1).

Enter the values for Dry and Loses the same way. When you have entered the CPT for Loses, the network window
should look like Figure 6.

30 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 6: The network window with node Loses selected. The CPT of Loses appears in the Tables Pane.

This completes the construction of the network. At this point it would be a good idea to save the network. Here is how
to do it:

• Select “Save” (or “Save As”) from the “File” menu.

• Enter a name (e.g. “apple”).

• Press “Save”.

Compiling the Network

Now, let’s compile the network and see how it works:

• Press the Run Mode tool button in the Tool Bar (see Figure 7).

Figure 7: The Run Mode tool button.

The compiler checks for the following errors:

• Cycles. There must be no directed cycles in a network.

© Copyright 2020, HUGIN EXPERT A/S 31

HUGIN Graphical User Interface Documentation, Release 8.9

• For each parent configuration of a node the probabilities of the different states must have the sum of 1. In
other words, each column of the table must sum to 1. If there is a column that does not sum to 1, the compiler
will normalize the values. This fact can be utilized when filling in the probabilities. Say, for example, that the
probability of a tree being sick is based on the observation of 13527 trees over one season, where 1678 got sick
and the rest didn’t. Instead of first computing the fractions, we just put 1678 in the sick state of the Sick node,
and 11849 in the no state. Then the compiler will compute the proper values.

If you have done exactly as this tutorial told you, there should not be any errors in the compilation process. The
compilation should be finished very fast with a small network like ours. After the compilation, the Run Mode is
entered (we have so far only been working in Edit Mode).

Running the Network

Running in Run Mode, the network window is split into two by a vertical bar (see Figure 8). To the left is the Node
List Pane and to the right is the Network Pane.

Figure 8: The network window in Run Mode. To the left is the Node List Pane (having Loses and Sick expanded) and
to the right is the Network Pane.

We can view the probabilities of a node being in a certain state by expanding the node in the Node List Pane. We
expand (collapse) a node by clicking its expand (collapse) icon in the Node List Pane, by double-clicking its node
symbol in the Node List Pane, or by selecting (deselecting) it in the Network Pane. We can also expand (collapse) all
nodes at once by pressing the expand (collapse) node list tool in the Tool Bar just to the right of the node properties
tool.

32 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Is the Tree Sick?

Now, imagine that we want to use our network to find the probability of an apple tree being sick given the information
that the tree is losing its leaves. This is done as follows:

• Expand all nodes (by pressing the expand node list tool).

• Enter the fact that the tree is losing its leaves by double clicking the state “yes” of the Loses node.

• Propagate this piece of evidence by pressing the Sum Propagation Tool in the Tool Bar (see Figure 9).

• Read the probability of Sick being in state “sick”

Figure 9: The Sum Propagation Tool.

This should give the output shown in Figure 10.

Figure 10: Our network after the evidence that the tree is losing its leaves has been entered and propagated.

The probability of the tree being sick is now 0.49.

If you do not read the value specified above, you have probably mistyped something when filling in the CPTs. Then
please check the CPTs of all the nodes.

© Copyright 2020, HUGIN EXPERT A/S 33

HUGIN Graphical User Interface Documentation, Release 8.9

The Monitor Windows

In the last section, we used the Node List Pane to enter evidence and retrieve beliefs. We can also do this by using
the monitor windows. The monitor windows show the same information as the Node List Pane but we have the
opportunity to place the monitor windows near the corresponding nodes of the network in the Network Pane. We can
open a monitor window for each node in the Network Pane, but the best way to use them is probably only to open a
monitor window for the nodes in the network which have special interest. Otherwise, they might take up too much
space.

Now, we shall open monitor windows for Sick and Loses and repeat the computations from before. First, initialize the
network:

• Press the Initialize Tool button (to the left of the Sum Propagation Tool).

Then, we are ready to open the monitor windows of Sick and loses.

• Select Sick and Loses (hold down the SHIFT key to select more nodes at the same time).

• Choose “Show Monitor Windows” from the “View” menu.

Figure 11: Monitor windows of Sick and loses shown in the Network Pane.

The rest of this tutorial introduces some very useful aspects of the HUGIN Graphical User Interface, but it can be
skipped.

34 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

The Most Likely Combination

From the propagation in the previous section we could see that the probability of the apple tree suffering from drought
is 0.47. In both the case of Sick and Dry it is more likely that the state is “not”. This could make one believe that the
most likely combination of states is when both Sick and Dry are in state “not”. However, this is a wrong conclusion.
If we want to find the most likely combination of states in all nodes, we should use max propagation (in stead of sum
propagation). The Max Propagation Tool is found in the Tool Bar just to the right of the Sum Propagation Tool.

Now, try to press the Max Propagation Tool. In each node, a state having the value 100.00 belongs to a most likely
combination of states. In this case, this gives one unique combination being the most likely: Sick is “sick” and Dry is
“not”

We see that even if Sick=”sick” is less likely than Sick=”not”, Sick=”sick” is contained in the most likely combination
of the states of the nodes while Sick=”not” is not. This shows that we need to be careful in making conclusions from
the result of a propagation.

Now, one might want to know the probability of this most likely combination of states (or of any other combination of
states) under the assumption that the entered evidence holds.

Computing the Probability of a Combination of States

Here, we shall describe a technique to compute the probability of the most likely combination of states given the
evidence that the apple tree is losing its leaves. This probability is written:

𝑃 (𝑆𝑖𝑐𝑘 = ”𝑦𝑒𝑠”, 𝐷𝑟𝑦 = ”𝑛𝑜𝑡”|𝐿𝑜𝑠𝑒𝑠 = ”𝑦𝑒𝑠”)

Each time we perform sum propagation in a network, the probability of the entered evidence is shown in the lower left
corner of the HUGIN Graphical User Interface window (the P(All) value). If we have chosen the “yes” state of the
Loses node and performed sum propagation, we can read the probability of Loses=”yes” (written P(Loses=”yes”)).
This value should be 0.1832.

The technique uses the following rule from probability theory (known as the fundamental rule):

𝑃 (𝐴,𝐵) = 𝑃 (𝐴|𝐵)𝑃 (𝐵)

The only kind of probability we can get from HUGIN is the probability of a series of pieces of evidence which can be
written in the form:

𝑃 (𝐴1, 𝐴2, ..., 𝐴𝑛)

We use the fundamental rule to rewrite our requested probability to some expression composed by such components:

𝑃 (𝑆𝑖𝑐𝑘 = ”𝑦𝑒𝑠”, 𝐷𝑟𝑦 = ”𝑛𝑜𝑡”|𝐿𝑜𝑠𝑒𝑠 = ”𝑦𝑒𝑠”)

= 𝑃 (𝑆𝑖𝑐𝑘 = ”𝑠𝑖𝑐𝑘”, 𝐷𝑟𝑦 = ”𝑛𝑜𝑡”, 𝐿𝑜𝑠𝑒𝑠 = ”𝑦𝑒𝑠”)/𝑃 (𝐿𝑜𝑠𝑒𝑠 = ”𝑦𝑒𝑠”)

In the fundamental rule, we have divided both sides with P(B). Then we have substituted A with Sick=”yes”,
Dry=”not” and B with Loses=”yes”.

We already know P(Loses=”yes”) so we only need to compute P(Sick=”sick”, Dry=”not”, Loses=”yes”). This is done
as follows:

• Enter Sick=”sick”, Dry=”not”, and Loses=”yes” in the network.

• Press the Sum Propagation Tool.

• Read P(Sick=”sick”, Dry=”not”, Loses=”yes”) as the P(All) value in the lower left corner.

© Copyright 2020, HUGIN EXPERT A/S 35

HUGIN Graphical User Interface Documentation, Release 8.9

This value should be 0.081. Now, we are ready to compute the requested probability:

𝑃 (𝑆𝑖𝑐𝑘 = ”𝑦𝑒𝑠”, 𝐷𝑟𝑦 = ”𝑛𝑜𝑡”|𝐿𝑜𝑠𝑒𝑠 = ”𝑦𝑒𝑠”)

= 0.081/0.1832

= 0.442

So, the probability of the most likely combination of states of Sick and Dry, given that Loses=”yes”, is 0.442.

3.2.4 Introduction to (Limited Memory) Influence Diagrams

Introduction to (Limited Memory) Influence Diagrams A (limited memory) influence diagram (ID) may be used in-
stead of a Bayesian network (BN) if you wish to explicitly model various decision alternatives and the utilities as-
sociated with these. To some extent it is possible to construct a model for decision making with a pure BN, but the
concepts of utility and decisions are not explicitly covered. An influence diagram is simply a BN, extended with utility
nodes and decision nodes. Having these two new types of nodes, we also need to have a name for the old node type.
We shall call these nodes chance nodes. We shall present the concept of influence diagrams by extending the BN
constructed in the apple tree example from the Introduction to BNs.

The Apple Tree Example

Again, we consider the Apple Tree Example (see Figure 1).

Figure 1: The BN constructed in the Introduction to BNs

Apple Jack now wants to decide whether or not to invest resources in giving the tree some treatment. Since this
involves a decision through time, we have to modify the BN into a dynamic one as described in the Introduction to
BNs Introduction to BNs (page 19) section. We first add three nodes very similar to those already in the network. The
new nodes Sick’, Dry’, and Loses’ represent the same as the old nodes - except that they represent the situation at the
time of harvest. These nodes have been added in Figure 2.

36 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Addition of similar nodes representing the harvest time expectations of the state of the tree.

The new nodes can be in the same states as the old nodes: Sick’ can be either “sick” or “not” - Dry’ can be either
“dry” or “not” - and Loses’ can be either “yes” or “no”. In the new model, we expect a causal dependence from both
the old Sick node to the new Sick’ node and the old Dry node to the new Dry’ node. This is because if, for example,
we expect the tree to be sick now, then this is also very likely to be the case in the future. Of course the strength of the
dependence depends on how far out in the future we look. Perhaps one could also have a dependence from Loses to
Loses’ but we have not done so in this model.

Apple Jack has the opportunity to do something about his problem. He can try to heal the tree with a treatment to
get rid of the possible sickness. If he expects that the losing of leaves is caused by drought, he might save his money
and just wait for rain. The action of giving the tree a treatment is now added as a decision node to the BN which will
then no longer be a BN. Instead it will be the influence diagram shown in Figure 3. Action nodes are represented by
rectangles.

© Copyright 2020, HUGIN EXPERT A/S 37

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: Addition of a decision node for treatment.

The Treat decision node has the states “treat” and “not”. As it appears from Figure 3, we have added a link from
Treat to Sick’. This is because we expect the treatment to have an impact on the future health of the tree. Before the
influence diagram is completed, we need to specify the utility function enabling us to compute the expected utility of
a decision. This is done by adding utility nodes to the diagram, each contributing with one part of the total utility. The
utility nodes are added in Figure 4. Utility nodes are represented by diamonds.

38 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: The complete qualitative representation of the (limited memory) influence diagram used for decision making
in Apple Jack’s orchard.

The utility node Cost gathers information about the cost of the treatment while Harv represents the utility at the time of
the harvest. It depends on the state of Sick’ indicating that the production of apples depends on the health of the tree.
Figure 4 shows the complete qualitative representation of the influence diagram. To get the quantitative representation
as well, we need to construct a conditional probability table (CPT) for each chance node and a utility table for each
utility node. A decision node does not have any table. The following tables show one way of how the CPTs of the
chance nodes could be specified.

Table 1: P(Sick).

Table 2: P(Dry).

© Copyright 2020, HUGIN EXPERT A/S 39

HUGIN Graphical User Interface Documentation, Release 8.9

Table 3: P(Loses | Sick, Dry).

Table 4: P(Sick’ | Sick, Treat).

Table 5: P(Dry’ | Dry).

Table 6: P(Loses’ | Sick’, Dry).

The following tables show how the tables of the utility nodes could be specified ín USD.

Table 7: U(Harv).

Table 8: U(Cost).

The utility tables are simply cost functions. Table 7 can be interpreted as if we have healthy tree (Sick’ is in state
“not”), then Apple Jack will get a $20000 income, while if the tree is sick (Sick’ is in state “yes”) Apple Jack’s income
will be only $3000. Table 8 shows that to treat the tree, Apple Jack has to spend $8000. The purpose of our influence
diagram is to be able to compute the action of the Treat node giving the highest expected utility. This is a very tricky

40 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

job if you are to do it without the help from a computer and we shall not do it here. In stead, we suggest that you
now try to go through the two tutorials (page 15) describing how to implement this influence diagram in the HUGIN
Graphical User Interface and let it do the computations. Also, you might be interested in learning more about the
semantics of (limited memory) influence diagrams (page 327)

Definition of (Limited Memory) Influence Diagrams

An (limited memory) influence diagram is a Bayesian network augmented with decision and utility nodes (the random
variables of a limited memory influence diagram are often called chance variables). The limited memory influence
diagram relaxes two fundamental assumptions of the traditional influence diagram: the non-forgetting assumption and
the total order on decisions.

We are interested in making the best possible decisions for our application. We therefore associate utilities with the
state configurations of the network. These utilities are represented by utility nodes. Each utility node has a utility
function that to each configuration of states of its parents associates a utility. (Utility nodes do not have children). By
making decisions, we influence the probabilities of the configurations of the network. We can therefore compute the
expected utility of each decision alternative (the global utility function is the sum of all the local utility functions). We
shall choose the alternative with the highest expected utility; this is known as the maximum expected utility principle.

Relaxing the non-forgetting assumption and the total order on decisions implies a significant change in the semantics
of a LIMID compared to a traditional influence diagram. In a LIMID it is necessary to specify for each decision the
information available to the decision maker at that decision. There are no implicit informational links in a LIMID.A
link into a decision node specify that the value of the parent node is known at the decision.

The computational method underlying the implementation of limited memory influence diagrams in the HUGIN De-
cision Engine is described by Lauritzen & Nilsson (2001) (page 519). The algorithm used is known as Single Policy
Updating. (page 241)

The Oil Wildcatter Example

As another example, consider the following decision scenario:

An oil wildcatter must decide whether or not to drill. He is uncertain whether the hole is dry, wet, or soaking. At a
cost of $10,000, the oil wildcatter could take seismic soundings which will help determine the underlying geological
structure at the site. The soundings will disclose whether the terrain below has closed structure (good), open structure

(so-so), or no structure (bad).

This decision scenario can be represented by the influence diagram of Figure 5, where T represents the decision on
whether or not to test; D represents the decision on whether to drill or not to drill; S represents the outcome of the
seismic soundings test (if the oil wildcatter decides to test); H represents the state of the hole; C represents the cost
associated with the seismic soundings test; and P represents the expected payoff associated with drilling.

© Copyright 2020, HUGIN EXPERT A/S 41

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 5: An influence diagram for the oil wildcatters decision problem.

The cost of drilling is $70,000. If the oil wildcatter decides to drill, the expected payoff (i.e., the value of the oil found
minus the cost of drilling) is $-70,000 if the hole is dry, $50,000 if the hole is wet, and $200,000 if the hole is soaking;
if the oil wildcatter decides not to drill, the payoff is (of course) $0.

The experts have estimated the following probability distribution for the state of the hole: P(dry)=0.5, P(wet)=0.3, and
P(soaking)=0.2. Moreover, the seismic soundings test is not perfect; the conditional probabilities for the outcomes of
the test given the state of the hole are:

On the basis of this (limited memory) influence diagram, the HUGIN Decision Engine computes the utility associated
with testing to be $22,500 and the utility associated with not testing to be $20,000. The optimal strategy is to perform
the seismic soundings test, and then decide whether to drill or not to drill based on the outcome of the test.

Notice that the informational link from node T to node D is of outmost importanct. The LIMID relaxes the non-
forgetting assumption of the traditional influence diagram. This implies that for each decision node it is necessary
(and very important) to specify exactly the information available to the decision maker. No informational links can
be assumed implicitly present in the network. [This example is due to Raiffa (1968) (page 519). A more thorough
description of this example is found in the Examples (page 495) section.]

42 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

The Apple Tree Example Continued

The LIMID in Figure 4 representing the decision problem of Apple Jack assumes a single decision with no observations
made prior to the decision. In a more realistic setting Apple Jack is likely to monitor the tree over a period of time
such as each day. Assume he prior to making a decision on treating the tree observes whether or not the tree is loosing
its leaves. Each day he observes if the tree is loosing its leaves and makes a decision on the treatment irrespectively of
what he did the previous day. We may use a limited memory influence diagram to model this situation.

Figure 6: A limited memory influence diagram for Apple Jack with multiple decisions.

Figure 6 shows a limited memory influence diagram for the situation described above where Apple Jack monitors the
tree for three days before harvest. The informational links of the diagram specifies that Apple Jack each day observes
whether the tree is (still) loosing its leaves, but otherwise neither recalls the observations nor the decisions made at
previous time steps.

The solution to the LIMID is a strategy consisting of one policy for each decision. The policy is a function from
the known variables to the states of the decision. It is not a function of all past observations as the decision maker
is assumed only to know the most recent observation on loses leaves. This is different from the traditional influence
diagram where the policy would be a function from all past observations and decisions as the decision maker is
assumed to be non-forgetting.

In the example there is a total order on the decisions. This need not be the case in general.

To learn how to build a LIMID using the HUGIN Graphical User Interface, please consult the How to Build LIMIDs
tutorial (page 44). Also, you might be interested in learning more about the semantics of (limited memory) influence
diagrams (page 327) and the associated constraints imposed on their usage.

© Copyright 2020, HUGIN EXPERT A/S 43

HUGIN Graphical User Interface Documentation, Release 8.9

3.2.5 How to Build a (Limited Memory) Influence Diagram

This tutorial shows you how to implement a small influence diagram in the HUGIN Graphical User Interface. It
requires that you have already constructed the Bayesian network from the How to Build a Bayesian Network Tutorial
(page 26). The influence diagram you are about to implement is the one modeled in the Influence Diagrams Tutorial
(page 36). It helps plantation owner Apple Jack to decide whether or not to give his apple tree, which is losing its
leaves, some treatment. The qualitative representation of the influence diagram is shown in Figure 1.

Figure 1: The qualitative representation of the influence diagram used for decision making in Apple Jacks plantation.

Open the Network for Editing

First, you must open the network constructed in the How to Build BNs (page 26) tutorial if it is not already open. Here
is how to do it:

• Select “Open” from the “File” menu.

• Enter the name of the network file (“apple.net”). You can do this by selecting it from the list of network files
(which have the “net” extension).

In Figure 2, the network has been opened and the HUGIN Graphical User Interface is currently working in Edit Mode.
We need to be in Edit Mode to edit the network, so if your network window shows the network in Run Mode, press
the Edit Mode tool button. If you opened it in Edit Mode, you do not need to do anything.

44 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The Network Window in Edit Mode with the network from the How to Build BNs tutorial.

Copying Nodes

In the influence diagram in Figure 1, there are three nodes very similar to those that we already have. In this case, the
HUGIN Graphical User Interface` allows you to copy a group of nodes and paste them in another area of the Network
Pane. Here is how to do it:

• Create a rectangle selection with the mouse cursor around all three nodes (drag a rectangle by holding down the
left mouse button).

• Select “Copy” from the “Edit” menu in the Main Window Menu Bar.

• Select “Paste” from the “Edit” menu in the Main Window Menu Bar.

• Move the new group of nodes to a spot where there is room for them.

The HUGIN Graphical User Interface generates new names and labels for the new nodes. You can keep the names
and change the labels to Sick’, Dry’, and Loses’ (you cannot use “Sick’” as the name because it contains the prime
character which is illegal in names):

• Select the node with the mouse cursor.

• Enter “Node Properties” by pressing the node properties tool (the 2nd left-most tool button in the tool bar of the
network window).

• Change the “Label” field.

© Copyright 2020, HUGIN EXPERT A/S 45

HUGIN Graphical User Interface Documentation, Release 8.9

• Press the “OK” button.

Perform the steps above for all three new nodes. Your network should then look as the one in Figure 3.

Figure 3: The network extended with Sick’, Dry’, and Loses’.

The next step is to add causal links from Sick to Sick’ and from Dry to Dry’: * Press the Link Tool. * Drag a link from
Sick to Sick’ with the left mouse button (while holding down the SHIFT key). * Repeat for Dry to Dry’.

Holding down the SHIFT key enables you to create more causal links sequentially without having to reactivate the
Link Tool.

Adding a Utility Node

So far, the network we have constructed is still a Bayesian network. Now, we shall make the first change that makes it
an influence diagram. This change is the addition of a utility node. The utility node we shall add is the Harv node (see
Figure 1) representing the utility gained from the harvest. Here is how to add it:

• Press the Utility Tool (to the right of the Link Tool).

• Click somewhere in the Network Pane (a good place would be in the lower right corner besides the Loses’ node).

• Change the name and label of the new utility node to “Harv”.

The harvest depends on the state of Sick’ and thus there is an link from Sick’ to Harv. Add this link:

• Press the Link Tool.

• Drag a link from Sick’ to Harv.

The utility of the harvest was specified to that found in Table 1.

46 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Table 1: U(Harv).

You enter the values of Table 1 into the utility table of Harv as follows:

• Select the Harv node by clicking it with the left mouse button.

• Enter the values from Table 1 in the utility table in the Tables Pane.

A Desicion Node and One More Utility Node

Now, you are about to add the decision node Treat (see Figure 1). This is done similar to the way you add chance
nodes and utility nodes:

• Press the Decision Tool (to the right of the Utility Tool).

• Click somewhere in the Network Pane (a good place would be to the right of the Dry node)

• Change the name and label of the new decision node to “Treat”.

You add an action to a decision node in the same way as you add a state to a chance node:

• Select the Treat node with the left mouse button.

• Press the add state tool.

• Change the action names to “treat” and “not”.

The Treat decision node has an impact on the Sick’ node so:

• Add a link from Treat to Sick’.

The new decision node represents the decision to give the tree some treatment or not. If the plantation owner (Apple
Jack) chooses to give treatment this will cost him something which shall be modeled by the Cost utility node. The
Cost node has the utility table shown in Table 2.

Table 2: U(Cost).

Now, add the Cost utility node to the influence diagram:

• Add a new utility node (a good place would be to the right of the Treat node).

• Change the name and label of this node to “Cost”

• Add a link from Treat to Cost.

• Fill in Table 2 in the utility table of Cost.

© Copyright 2020, HUGIN EXPERT A/S 47

HUGIN Graphical User Interface Documentation, Release 8.9

Filling in CPTs

When we copied the nodes Sick’ and Dry’, they inherited the CPTs of Sick and Dry. However, as both these nodes
have become children of other nodes, their CPTs are no longer correct. Their new CPTs were specified to those found
in Table 3 and Table 4. * Fill in Table 3 as the CPT of Sick’. * Fill in Table 4 as the CPT of Dry’.

Table 3: P(Sick’ | Sick, Treat).

Table 4: P(Dry’ | Dry).

Now, your (limited memory) influence diagram (LIMID) is finished and it should look like the one in Figure 4. At this
point it would be a good idea to save your LIMID.

Figure 4: The complete influence diagram.

48 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Compiling the Limited Memory Influence Diagram

You can now try out the LIMID. First, compile the LIMID:

• Press the compile tool (the right most tool button in the network window Tool Bar).

The compilation of an influence diagram may produce some of the same errors as described in the How to Build BNs
(page 26) tutorial. If the LIMID does not compile, you have probably made some minor error. Once the influence
diagram has been compiled, probabilities and expected utilities are computed under the initial policy. To solve the
influence diagram it is necessary to invoke Single Policy Updating (page 241).

What Should Apple Jack Do?

When the LIMID has been compiled, you should do a Single Policy Updating (page 241) . Now, imagine that the only
thing Jack knows about his tree is that it is losing leaves. Then, what will be the best thing for him to do? To find out
this, follow these steps:

• Expand the Loses chance node and the Treat decision node in the node list pane on the left (simply select them).

• Enter the evidence that Loses is “yes” (by double clicking the “yes” state).

• Propagate the influence diagram (press the Sum Propagation Tool, unless auto-propagate is set).

• Read the expected utility of “treat” and “not” in the Treat decision node.

You should be reading something looking like that in Figure 5.

Figure 5: The influence diagram propagated with the evidence that Loses=”yes”.

You read 11514 as the expected utility of doing nothing. This suggests that it will be best for Apple Jack not to treat
the tree.

© Copyright 2020, HUGIN EXPERT A/S 49

HUGIN Graphical User Interface Documentation, Release 8.9

This finishes the tutorial. You should now be able use the HUGIN Graphical User Interface to construct your own
(limited-memory) influence diagrams. However, if you want to create large and complex models, you should study
the area more than just reading this tutorial.

Please read the document semantics of LIMID (page 327) to learn more about LIMIDs.

3.2.6 Introduction to Object-Oriented Networks

An Object-Oriented Network is a network (i.e., Bayesian network or LIMID model) that, in addition to the usual
nodes, contains instance nodes. An instance node is a node representing an instance of another network. In other
words, an instance node represents a subnet. Therefore, following standard object-oriented terminology, an object-
oriented network is often referred to as a class. Of course, the network of which instances exist in other networks
can itself contain instance nodes, whereby an object-oriented network can be viewed as a hierarchical description (or
model) of a problem domain. There are three main advantages of constructing a network using instance nodes, as
described in the following.

The model construction activity most often involves repeated changes of level of abstraction. That is, it is performed
in a top-down fashion, a bottom-up fashion, or a mix of the two. Such repeated changes of focus are due partly to the
fact that humans naturally think about systems in terms of hierarchies of abstractions and partly due to lack of ability
to mentally capture all details of a complex system simultaneously. The use of instance nodes provides support for
working with different levels of abstraction in constructing network models.

As systems often are composed of collections of identical or almost identical components, models of systems often
contain repetitive patterns (i.e., commonly occurring solutions or problem types). In Bayesian networks and LIMIDs,
such patterns are network fragments. The notion of instance nodes makes it very easy to construct multiple identical
instances of a network fragment.

Describing a network in a hierarchical fashion often makes the network much less cluttered, and thus provides a much
better means of communicating ideas among knowledge engineers and users.

The HUGIN Graphical User Interface 6.* supports construction of object-oriented networks in the basic interpretation
of the concept mentioned above. A fully object-oriented paradigm for constructing Bayesian networks and LIMIDs
should also support the notions of subclasses and inheritance, as known from object-oriented programming languages.
Thus, the basic mechanisms provided by the HUGIN Graphical User Interface 6.* supports the construction of what
might be called hierarchical networks.

Interface nodes

An instance node connects to other nodes via some of the (basic) nodes in the copy of the network (the master) of
which it is an instance. (Note that an instance node should be thought of as a copy of the network of which it is an
instance.) These nodes are known as interface nodes. As we wish to support information hiding, the interface nodes
only comprise a subset of the nodes in the master network. Interface nodes are subdivided into a set of input nodes
and output nodes.

Input nodes of an instance of a master network are not real nodes but only to be considered as placeholders for (basic)
nodes of the network(s) containing instances of the master network. These basic nodes are said to be bound to the input
nodes (and vice versa). Note that if an input node of an instance hasn’t been bound, a default potential (probability
table) will be associated with it. The probabilities in this table is specified in the master network. Output nodes of
an instance of a master network are real nodes that can be specified as parents of nodes in the network containing
the instance node or can be bound to an input node of another instance node of the network. The following example
demonstrates what all this means.

50 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

The Disease Example Revisited

In the Bayesian Networks (page 19) section, we presented the dynamic Bayesian network example shown in Figure 1.
This example illustrates the progression of diseases D1 and D2 over time such that D1 at the next time slice depends
on D1 at the current time slice, and similarly for D2. S1 and S2 represent symptoms for the diseases. In Figure 1 we
have only indicated the model for two consecutive time slices.

Figure 1: An example of Dynamic Bayesian Network (DBN).

Creating the model in this fashion covering several time slices is a tedious job. Assuming that the structures and the
tables of the time slices are identical, and that the transition probabilities P(D1|D1 prev) and P(D2|D2 prev) identical
for all time slices (which is often the case in real-world applications), constructing such a time-sliced model can be
done very elegantly using instance nodes. First, we create the model for a single time slice (see Figure 2). This model
takes as input the disease nodes of the previous time slice, and the disease nodes D1 and D2 act as output nodes, since
they should be bound to the input nodes of the next time slice. The input nodes are indicated in Figure 2 with dashed
outlines.

© Copyright 2020, HUGIN EXPERT A/S 51

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: BN representing a single time slice in the disease problem.

The transition probabilities P(D1|D1 prev) and P(D2|D2 prev) describing the temporal behavior as well as the proba-
bilities describing the atemporal behavior are contained in this model.

Second, we construct a model covering, say 10, time slices simply by creating k instances of the network in Figure 1
and bind the outputs of time slice 1 to the inputs of time slice 2, etc. In Figure 3, we have shown the resulting model
for k=3.

Figure 3: A 3-time slices dynamic Bayesian network (DBN) specified as an object-oriented network.

If there are many instance nodes, the object-oriented network might appear somewhat cluttered. Therefore, once the
binding links have been created, we most often prefer to collapse the instance nodes, as shown in Figure 4.

Figure 4: The DBN in Figure 3 with collapsed instance nodes.

52 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Accident Example

The following example was first used in Koller & Pfeffer (1997) Object-Oriented Bayesian Networks, Proceedings of
the 13th Conf. on UAI. The network (see Figure 5) models a car accident situation, and contains instance nodes for
subnetworks representing characteristics of the driver, the car, and the road.

Figure 5: An object-oriented network describing a car accident situation.

Again, collapsing the instance nodes makes the network less cluttered, as illustrated in Figure 6.

© Copyright 2020, HUGIN EXPERT A/S 53

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 6: The network in Figure 5 with instance nodes collapsed.

Now, the network of which the car node is an instance contains itself several instance nodes, as shown in Figure 7.

54 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 7: The network of which the car node is an instance.

Figure 7: The network of which the car node is an instance. The benefit of constructing this model using the object-
oriented network technology is indeed clear. HUGIN provides you with a tool to construct object-oriented networks.
After constructing an object-oriented network, you can do belief revision, belief updating, and much more, just as
for ordinary BNs. To learn how to build object-oriented networks using the HUGIN Graphical User Interface, please
consult the How to Build OOBNs (page 55) tutorial.

3.2.7 How to Build an Object-Oriented Bayesian Network

This tutorial shows how to implement a small object-oriented network in the HUGIN Graphical User Interface. The
network we are about to construct is the one modeled in the Diseases example in the Object Orientation (page 50)
tutorial. The qualitative (or structural) representation of our object-oriented network is shown in Figure 1. In this
tutorial, we shall ignore the specification of the CPTs.

Figure 1: Object-oriented network representing the Diseases problem.

© Copyright 2020, HUGIN EXPERT A/S 55

HUGIN Graphical User Interface Documentation, Release 8.9

If you want to understand the design of this object-oriented network, you should read about it in the Object Orientation
tutorial. Were we to construct this time-sliced network as a Bayesian network, we would get the network shown in
Figure 2.

Figure 2: BN representation of the Diseases problem.

Creating the Time-Slice Model

A network (i.e., Bayesian network or LIMID) is a special case of an object-oriented network. What makes a network
object oriented is the existence of instance nodes (i.e., nodes that represent instances of other networks). Thus, we
start out by creating a new empty network by selecting the “New” menu item in the “File” menu. This gives us a
new network window containing an empty network called “unnamed<x>”, where x is some integer. It starts up in
Edit Mode which allows us to start constructing the object-oriented network immediately (the other main mode is Run
Mode which allows you to use the network). ,

In Figure 2, we observe that each of the three time slices contains four nodes: D1, D2, S1, and S2, where D1 and D2
represent two different diseases with states “Present” and “Absent”, and S1 and S2 represent symptoms that both may
be observed as consequences of each of the diseases. We shall assume that S1 and S2 represent symptoms with two
possible outcomes, “Observed” and “Unobserved”. As each of the time slices are identical, both at the qualitative (or
structural) level and quantitative level (i.e., the CPTs are identical, including those that describe the temporal aspect,
namely P(D1_2|D1_1), P(D2_2|D2_1), etc.), we need only construct a model describing a generic time slice and then
connect three instances of this network.

56 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Creating the Nodes

First, we construct the generic time-slice model, containing the four nodes D1, D2, S1, and S2. The nodes all represent
discrete chance variables. Therefore, we select the Discrete Chance Tool (page 208) and create the four nodes by
clicking the left mouse button at four different locations in the network pane (page 167) while keeping the Shift key
down (to avoid reselecting the tool for each node). We then change the default names of the nodes and their default
state names using the Node Properties (page 197) pane. Second, we select the Link Tool and create the link from D1
to S1 by dragging the mouse cursor (i.e., pressing the left mouse button and moving the mouse cursor while keeping
the button pressed) from a point inside D1 to a point inside S1 and then releasing the mouse button. Again, we keep
the Shift key pressed, and create the other three links in the same manner. The result is illustrated in Figure 3.

Figure 3: BN for a single time slice of the Diseases problem.

Output Nodes

Now, in order for a network for a single time-slice have parent nodes in the immediately preceding network, we need
to be able to refer to nodes outside the network in Figure 3. In a conventional BN, this is not possible. Thus, as D1 and
D2 are going to be parents of D1 and D2, respectively, in the next time slice, we must declare D1 and D2 as output
nodes, making them visible outside the network (or rather through instances of the network).

Input Nodes

Also, in the network in Figure 3, we should be able to specify the temporal aspect, namely the CPTs P(D1|D1 prev) and
P(D2|D2 prev), where the nodes “D1 prev” and “D2 prev” are placeholder nodes for D1 and D2, respectively, in the
immediately preceding time slice. Such placeholder nodes are referred to as input nodes, and shouldn’t be confused
with real nodes. A real node, which is type consistent with an input node, can be bound to that input node. That is,
an input node becomes identical with the node that is bound to it. However, if an input node hasn’t got a binding
associated with it, the network containing the input node can still be used (i.e., compiled in to a junction tree and used
for inference). In that case the input node is treated as a real node. That is, each input node has a CPT associated with
it just as any ordinary node, but this CPT is used only if no nodes have been bound to the input node in a network
containing an instance of the network in which the input node is defined. Input nodes and output nodes are collectively
referred to as interface nodes.

© Copyright 2020, HUGIN EXPERT A/S 57

HUGIN Graphical User Interface Documentation, Release 8.9

Creating the Interface Nodes

Now, let’s try to put all this into practice. First, we declare D1 and D2 as output nodes. This is done by clicking the
“Output” check box in the Node Properties (page 197) pane for each of them. To indicate their new status as output
nodes, D1 and D2 now are drawn with thick borders of the color selected for interface nodes (as set in the Network
Properties (page 167) pane).

To create the two input nodes, “D1 prev” and “D2 prev”, we first create two ordinary nodes and set their names to
D1_prev and D2_prev (and/or their labels to “D1 prev” and “D2 prev”), respectively, in the Node Properties pane.
Also, in the Node Properties pane for each of these two new nodes, we click the “Input” check boxes to declare them
as input nodes. Similar to D1 and D2, “D1 prev” and “D2 prev” are drawn with thick borders of the interface nodes
color. In addition, the appearance of the (regular) borders of “D1 prev” and “D2 prev” changes from solid to dashed,
which indicates that they are not real nodes.

Finally, we create links from “D1 prev” and “D2 prev” to D1 and D2, respectively. The result of these operations
appear in Figure 4.

Figure 4: BN for a single time slice of the Diseases problem, including specifications of interface nodes.

Creating the Diseases Mode

To create the final Diseases model spanning three time slices, we first create a new empty network (via the “New”
menu item in the “File” menu). Next, we select the Instance Tool (page 151) and create three instance nodes by
clicking the left mouse button at three different locations in the network pane (page 167) while keeping the Shift key
down. The result appears in Figure 5 (scaled to 81%).

58 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 5: The Network Pane contains the three instance nodes that represent three instances of the time-slice model
shown in Figure 4.

Each instance node appear as a rectangle with rounded corners. We note that the nodes declared as interface nodes in
the generic time-slice model appear in each of the instance nodes. The input nodes appear in a row at the top of the
instance node, and, similarly, the output nodes appear at the bottom of the instance node.

Next, we need to bind the output nodes of instances DiseasesSlice_1 and DiseasesSlice_2 to the input nodes of
instances DiseasesSlice_2 and DiseasesSlice_3, respectively. This is done by creating links (via the :ref:` Link
Tool<Link_tool>`) from the output nodes to the corresponding input nodes. The resulting model appears in Fig-
ure 6.

Figure 6: The output nodes of an instance are bound to input nodes of another instance using the Link Tool.

Obviously, the model would look nicer if the order of appearance of the input nodes were reversed. If we select the
Select Tool (page 151), we can easily alter the order of appearance of the interface nodes. We move an interface node
one position to the left (right if the Shift key is down) by placing the mouse cursor on top of the interface node and
clicking the left mouse button. After reordering the network appears as in Figure 7.

© Copyright 2020, HUGIN EXPERT A/S 59

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 7: The order of appearance of interface nodes can be altered through simple mouse clicks..

Finally, it is often desireable to be able to collapse one or more of the interface nodes in order to hide away irrelevant
details, thereby making the network much less cluttered. Again, if we activate the Select Tool (page 151), we can
collapse (expand) an expanded (collapsed) instance node, simply by clicking the left mouse button right outside the
node. Alternatively, we can choose the “Collapse Instance Nodes” (“Expand Instance Nodes”) menu item in the
“View” menu, which collapses (expands) all instance nodes.

The object-oriented network in Figure 7 with the instance nodes collapsed appear in Figure 8.

Figure 8: The object-oriented network in Figure 7 with the instance nodes collapsed.

Compiling the Object-Oriented Network

Now, assuming the CPTs of the time-slice model in Figure 4 has been filled in (see the tutorial on BNs (page 26) for
details), it is the time to compile the network and see how it works:

• Press the Run Mode tool button in the Tool Bar (see Figure 9).

Figure 9: The Run Mode tool button.

• For each configuration of parent states in the CPT of a node the probabilities of the different states of the node
must sum to 1. In other words, each column of the table must sum to 1. If there is a column that does not sum
to 1, the compiler will normalize the values. This fact can be utilized when filling in the probabilities. Say, for
example, that the probability of D1=Present in the first time slice is based on the observation of 13527 patients,
168 of whom were observed to have the disease. Instead of first computing the fractions, you just put 168 in the
Present state of D1, and 13359 in the Absent state. Then the compiler will compute the proper values.

The compilation of small networks like the Diseases network is completed in very short time. After the compilation,
the Run Mode is entered (we have so far only been working in Edit Mode).

60 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Running the Object-Oriented Network

In Run Mode, the network window is split into two by a vertical bar (see Figure 10). To the left is the Node List Pane
and to the right is the Network Pane.

Figure 10: The network window in Run Mode. To the left is the Node List Pane (with all nodes collapsed) and to the
right is the Network Pane.

You can view the probabilities of a node being in a certain state by expanding the node in the Node List Pane. You
expand (collapse) a node by clicking its expand (collapse) icon in the Node List Pane, by double-clicking its node
symbol in the Node List Pane, or by selecting (deselecting) it in the Network Pane. You can also expand (collapse) all
nodes at once by pressing the expand (collapse) node list tool in the Tool Bar just to the right of the node properties
tool.

Unlike basic nodes, instance nodes don’t have belief monitors associated with them, as they represent entire
(sub)networks. Instead we must expand the instance node, whereby we get to see the list of nodes of the (sub)network
that the instance node represents (see Figure 11).

© Copyright 2020, HUGIN EXPERT A/S 61

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 11: The nodes of the network represented by an instance node, get displayed in the Node List Pane when the
instance node gets selected.

If the instances contains many nodes, locating a given node in the node list may be difficult. When this is the case, the
instance can be “traversed” (page 119) by right-clicking on the node and selecting “Traverse Instance” (or selecting
the node and choosing “Traverse Instance” from the network menu). This will open a window with compiled version
of the class from which the instance node is created. In this window evidence can be inserted, and then transferred to
any available instance. When the instances contains many nodes, it is possible to hide all private nodes from the node
list to prevent the list from being to cluttered. This is done by selecting Toggle Private Nodes (page 227) in the View
menu. For more details on the Run Mode, please consult the How to Build BNs (page 26) tutorial.

3.2.8 Node Table Tutorial

This tutorial explains the functionalities of node tables. To each chance node in a Bayesian network and each node
in a (limited-memory) influence diagram is assigned a table, specifying a function associated with the node. Each
decision node has a table specifying the initial policy for the decision variable represented by the node. These tables
are referred to as node tables. The types of the tables (page 65) differ depending on the types of the nodes.

The HUGIN Graphical User Interface provides a number of powerful features for displaying node tables (page 70),
including resizing, collapsing selected sets of columns, graphics display modes, etc. Furthermore, the user can choose
between two different ways of organizing the tables:

• Framed tables (Figure 1)

• Tabbed tables (Figure 2)

62 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Tables displayed in framed mode

Figure 2: Tables displayed in tabbed mode

The framed mode has the advantage that several tables can be viewed at once, whereas the tabbed mode is a lot more
compact (with several open tables) and it is easier to navigate the tables. The preferred table mode can be set in the
Preferences (page 189), and it can be changed by selecting the “Toggle Table Mode” item in the View Menu (page 176)
of a table.

The probabilities and utilities of discrete chance nodes and utility nodes, respectively, can be specified manually
(i.e., directly through click-and-type operations) or they can be specified indirectly through specification of powerful
expressions (page 149), which (if appropriate) can save a lot of work. The initial policy for a decision node can also
be specified both manually and using expressions.

For all four kinds of tables, there is a menu bar containing an Edit menu (page 67), a Functions menu (page 68), and a
View menu (page 69).

When working in Edit Mode (page 122) with the Tables Pane (page 224) open, the currently selected nodes will have
their tables displayed in the Tables Pane.

© Copyright 2020, HUGIN EXPERT A/S 63

HUGIN Graphical User Interface Documentation, Release 8.9

Modes

For discrete chance nodes (page 208), discrete decision nodes (page 209), and utility nodes (page 211) the node table
has two different modes:

• Manual mode in which the numbers (probabilities or utilities) can be specified manually. This is the default
mode, see Figure 1.

• Expressions mode in which the numbers can be specified through one or more mathematical expressions, see
Figure 2.

Figure 1: A CPT in manual mode.

Figure 2: A CPT in expressions mode.

To switch between the two modes, select the appropriate item in the Functions menu of the node table, see Figure 3.

64 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: Selection of Expressions mode.

In Expressions mode there are one or more editable text fields in which expressions can be specified (one in each text
field) either manually or through the Expression Builder (page 256). The number of text fields available depends on
the number of states of the model nodes. If no model nodes have been specified, there will only be one text field (i.e.,
the same expression is used for all parent configurations).

Types of Tables

For discrete chance nodes (page 208) this function expresses a conditional probability distribution over the states of
the node for each configuration of the states of the parents of the node, which are also discrete chance nodes. The
conditional probability distribution (or marginal probability distribution in case of no parents) is represented as a
conditional probability table (abbreviated CPT). Figure 4 shows an example of a CPT for the node Grass with parents
Rain and Sprinkler.

Figure 4: The CPT of node Grass with parents Rain and Sprinkler.

For each continuous chance node (page 209) with discrete parents I and continuous parents Z, the function expresses
a (one-dimensional) Gaussian distribution conditional on the values of the parents:

𝑃 (𝑌 |𝐼 = 𝑖, 𝑍 = 𝑧) = 𝒩 (𝛼(⟩) + 𝛽(⟩)𝜏‡, 𝛾(⟩))

Note that the mean depends linearly on the continuous parents and that the variance does not depend on the continuous
parents. However, both the linear function and the variance are allowed to depend on the discrete parents. (These
restrictions ensure that exact inference is possible.) Thus, for each configuration of the discrete parents, a mean and
a variance parameter must be specified, as well as a regression parameter for each continuous parent. Figure 5 shows

© Copyright 2020, HUGIN EXPERT A/S 65

HUGIN Graphical User Interface Documentation, Release 8.9

the table for the continuous node Dust Emission (Emission) with discrete parents Burning Regimen (Burn) and Waste
(Waste Type), and the continuous parent Filter Efficiency (Efficiency).

Figure 5: The table for continuous node Emission with parents Burn and Waste.

For each utility node (page 211), the function associated with the node expresses a utility function, where a utility
value has to be specified for each configuration of its parents, which can be discrete chance and decision nodes. Figure
6 shows the table for the utility node Utility with the discrete chance node Oil and the discrete decision node Drill as
parents.

Figure 6: The table for utility node Utility with parents Drill and Oil.

For each decision node (page 209) is associated a decision table, which is an encoding of the initial policy for the
decision node. Figure 7 shows the table of a decision node, D, with decision options “drill” and “don’t drill”.

Figure 7: The decision table of a decision node D.

66 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Edit Menu

The Edit menu provides the following functionalities (see Figure 8):

• Copying the selected cells of the table. Several cells can be selected by dragging the mouse cursor (i.e., move
the mouse while keeping the left mouse button down). The selected cells will be highlighted.

• Pasting what has previous been copied. The destination cells of the paste operation are given as those covered
by the rectangle extending right and down from the cell selected (i.e., the selected cell defines the upper-left cell
of the destination cells).

• Renaming / relabeling of the node associated with the table. When selected, this menu item makes a dialog box
appear through which the name and label of the node can be changed. Note that this dialog box is also available
by right-clicking the title bar of the table.

• Normalizing the probability distributions of a CPT (i.e., making the probabilities in each distribution - one for
each parent configuration - sum to 1).

• Resetting the values of all cells in the table to their default values (1 for CPTs and fading tables, and 0 for utility
and experience tables). (See the section on Learning - Adaptation (page 228) for a description of experience
and fading tables.)

• Randomizing the values of all cells of a CPT (i.e., assigning random values between 0 and 1 to all probabilities
in each distribution, making sure that the values for each distribution sum to 1).

• Creating an identity table the values of each cell on the diagonal is assigned a value of 1 and every other cell is
assigned a value of 0.

Please note that the copy and paste operations also work across applications (e.g., to/from the HUGIN node table
from/to Excel, Word, Emacs, etc.).

Figure 8: Edit menu for the node table.

© Copyright 2020, HUGIN EXPERT A/S 67

HUGIN Graphical User Interface Documentation, Release 8.9

Functions Menu

The Functions menu provides the following functionalities (see Figure 9): Creating and deleting experience and fading
tables is performed via the Experience and Fading submenu (see Figure 10). (See the section on Learning - Adaptation
for a description of experience and fading tables.) Specifying expressions (models) for how to generate the values of
the cells of CPTs and utility tables. See section Expressions for details. Setting the type of the node to one of Labelled,
Boolean, Numbered, or Interval if the node is a discrete chance node or a discrete decision node. See section Node
Type for details on node types. Exporting the table (i.e., the values of the cells of the table) to either an x-delimited
text file, where ‘x’ can be ‘,’, ‘<space>’, or ‘<tab>’.

Figure 9: Functions menu for the node table.

Figure 10: Experience and fading tables created and shown.

68 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

View Menu

The View menu provides the following functionalities (see Figure 11):

Figure 11: View menu for the node table.

Below are some test paragraphs.

• Selecting display mode. A number of different modes for displaying the numbers of the table are available:

– Normal mode in which only the numbers are displayed.

– Bar mode in which each number is overlaid by a bar of length corresponding to the number (see Figure
16).

– Pure bars mode in which only the bars are shown (see Figure 17).

– Auto normalize can be turned on, meaning that when dragging a bar the other bars belonging to the dis-
tribution are automatically adjusted to make sure the numbers (represented by the bar lengths) sum to
1.

• Locate Node selects and scrolls to the node whose table is viewed.

• Show / hide experience table toggles between showing or hiding the experience table, if any.

• Show / hide fading table toggles between showing or hiding the fading table, if any.

• Show state labels shows state labels for numbered or interval nodes (instead of state values). This allows for
emulation of “ordinal” nodes. That is, a node can have the state labels “low”, “medium”, and “high”, and these
will have a natural ordering which can be used in expressions.

• Table Precision displays a dialog for setting the number of decimals shown in the table.

• Toggle table mode toggles between framed and tabbed tables.

• Node Properties shows the properties (page 201) for the node whose table is viewed.

See the next section (page 70) for more details on display modes.

© Copyright 2020, HUGIN EXPERT A/S 69

HUGIN Graphical User Interface Documentation, Release 8.9

Displaying a Node Table

When the Tables Pane (page 224) is open, the tables for the nodes selected in the Network Pane (page 167) will be
displayed. The HUGIN Graphical User Interface has a number of powerful features for displaying node tables:

• Resizing through dragging

• Re-ordering of parents

• Collapsing the display of subsets of parent configurations

• Displaying probabilities as numbers, bars, or both.

A node table frame (i.e., the internal window displaying the table) can be resized arbitrarily by clicking and holding
(i.e., dragging) the left mouse at the border of the frame. The width of the cells of the table resizes correspondingly.
The width of the first column (containing parent and state names) can be resized by dragging the left mouse button at
the border between the first and the second column. This can be useful if the parent and/or state names are very long
or very short.

The order of appearance of the parents in the node table can be changed in Table tab (page 218) of the Node Properties
pane. This can be useful for grouping together sets of distributions.

Also, for better viewing of selected sets of distributions, sets of columns (corresponding to sets of parent configu-
rations) can be collapsed by double-clicking the appropriate labels for parent states. Figure 12 shows (part of) the
table for node C5 with parents C1, C2, C3, and C4. Now, suppose we’re interested in working with the probability
distributions for C1 in state “State 2”. One option would be to use the horizontal scroll bar. Another, much easier
and more convenient approach would be to collapse the part of the table where C1 is in state “State 1”. This can be
achieved by double-clicking the text field labeled “State 1” in the C1 row.

Figure 12: The table for node C5 with all columns collapsed for which the state of parent node C1 equals “State 2”.

Figure 13 shows the resulting table. Note that the width of the cells has changed, allowing us to see all digits after
the decimal point. Likewise, we can collapse other columns. In general, the cells in the parent states section can be
double-clicked for all parent rows but the last, making the corresponding columns collapse. Figure 14 shows the table
with all columns collapsed where the states for all parent nodes but C4 equals “State 1”.

70 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 13: The table for node C5 with all columns collapsed for which the state of parent node C1 equals “State 1”.

Figure 14: The table for node C5 with all columns collapsed for which the states of parent nodes C1, C2, and C3 equal
“State 1”

A collapsed column can be expanded by double-clicking the top cell of the column. Please note that when changing
the order of appearance of the parents (see above), any collapsed columns will be expanded. Sometimes, viewing or
even specifying probability distributions graphically instead of numerically is preferable. The HUGIN Graphical User
Interface allows the user to select among three different display modes: The numerical mode (denoted the Normal
mode), the numerical and graphics mode (denoted the Bar mode), and the graphics mode (denoted the Pure bars
mode). The desired mode can be selected under the View menu, see Figure 15.

Figure 15: The probabilities of a table for a discrete chance node can be displayed numerically, graphically, or both
numerically and graphically.

© Copyright 2020, HUGIN EXPERT A/S 71

HUGIN Graphical User Interface Documentation, Release 8.9

Figures 16 and 17 show the table of Figure 14 in Bar mode and Pure bars mode, respectively.

Figure 16: The CPT for node C5 displayed in Bar mode.

Figure 17: The CPT for node C5 displayed in Pure Bars mode.

Graphical specification of probabilities is performed by dragging the bars with the left mouse button. When Bar
mode or Pure bars mode have been selected, the distributions can be set to auto-normalize when the probabilities are
changed. This feature can be selected under the Display mode submenu of the View menu.

Please note that the graphical viewing and specification mode is available only in tables for discrete chance and
decision nodes.

3.2.9 Table Generator Tutorial

This tutorial shows you how the Table Generator functionality can be used to simplify the specification of conditional
probability tables (CPTs) for discrete chance nodes, utility tables for utility nodes, and initial policies for decision
nodes. The tutorial describes how these tables can be described compactly using models and expressions. This is
particularly useful when the conditional probability distribution for a variable follows (at least approximately) certain
functional or distributional forms. In such cases it is cumbersome to specify the conditional probability table (CPT)
manually.

Since the type of expressions available depends on the type of the node, it will be illuminating to discuss the different
node sub-types (page 73) that are supported by the HUGIN Decision Engine.

A model consists of a list of discrete nodes and a set of expressions (one expression for each configuration of the states
of the nodes). The list of nodes of a model is referred to as model nodes (page 73).

An expression is built using standard statistical distributions (e.g., Normal, Binomial, Beta, Gamma, etc.), arithmetic
operators, standard mathematical functions (e.g., logarithmic, exponential, trigonometric, and hyperbolic functions),
logical operators (e.g., and, or, if-then-else), and relations (e.g., less-than, equals).

Expressions can be constructed manually (see syntax for expressions (page 84)) or by the assistance of the Expression
Builder (page 256), which guides the user through the construction, using series of dialog boxes.

72 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Sub-Typing of Discrete Nodes

The different operators used in an expression have different return types and different type requirements for arguments.
Thus, in order to provide a rich language for specifying expressions, it is convenient to have a classification of the
discrete chance and decision nodes into different groups (see also section Node Type (page 201)):

• Labelled nodes can be used in equality comparisons and to express deterministic relationships. For example,
a labelled node C1 with states “State 1” and “State 2” can appear in an expression like ‘if (C1 == “State 1”,
Distribution (0.2, 0.8), Distribution (0.4, 0.6))’ for P(C2 | C1), where C2 is another discrete chance node with
two possible states.

• Boolean nodes represent the truth values ‘false’ and ‘true’ (in that order) and can be used in logical operators.
For example, for a Boolean node, B0, being a the logical OR of its (Boolean) parents, B1, B2, and B3, P(B0|B1,
B2, B3) can be specified simply as ‘or (B1, B2, B3)’.

• Numbered nodes represent increasing sequences of numbers (integers or reals) and can be used in arithmetic
operators, mathematical functions, etc.

• Interval nodes represent disjoint intervals on the real line and can be used in the same way as numbered nodes. In
addition, they can be used when specifying the intervals over which a continuous quantity are to be discretized.

Numbered nodes and interval nodes are jointly referred to as numeric nodes.

Constant Values

The following kinds of constants can be used in expressions:

• State labels (i.e., sequences of characters encapsulated in quotation characters (“)).

• Numeric values (including integers, reals, and intervals of integers and reals). For example, a valid numeric
expression could be “X + 3.4” (without the quotation characters; otherwise, it will be interpreted as a state
label), where X is the name of a numeric node (page 73).

• Infinity. Positive infinity is denoted by “inf” (without the quotation characters), and negative infinity by “-inf”.

• Boolean values: “false” and “true” (without the quotation characters). Notice that the Boolean constants must
be indicated using lower case.

Model Nodes

Quite often one needs different expressions depending on the states of one or more parent nodes. Using a number
of nested if-then-else expressions is one way of coping with this. The resulting expression, however, often gets very
complicated and hence difficult to evaluate by visual inspection and, thus, difficult to maintain.

To simplify complicated expressions, the notion of model nodes can be quite useful.

As mentioned above, a model for a CPT consists of a list of model nodes and an expression for each configuration of
the states of the model nodes. That is, if there are no model nodes, the model contains a single expression.

The model nodes for a particular model constitute a subset of the parents of the node to which the model belongs. This
subset is specified under the Table tab (page 218) of the Node Properties dialog box.

An example of the use of model nodes is given in the below example, Discretization of a Random Variable (page 76).

© Copyright 2020, HUGIN EXPERT A/S 73

HUGIN Graphical User Interface Documentation, Release 8.9

Simple Examples

Number of People

Assume that in some application we have probability distributions over the number of males and females, where
the distributions are defined over intervals [0 - 100), [100 - 500), [500 - 1000), and that we wish to compute the
distribution over the total number of individuals given the two former distributions. It is a simple but tedious task to
specify P(NI | NM, NF), where NI, NM, and NF stands for number of individuals, number of males, and number of
females, respectively. A much more expedient way of specifying this conditional probability distribution would be to
let NM and NF be represented as interval nodes with states [0 - 100), [100 - 500), and [500 - 1000), and to let NI be
represented as an interval node with states [0 - 200), [200 - 1000), and [1000 - 2000), for example, and then define
P(NI | NM, NF) through the simple expression NI = NM + NF.

To specify that expression, we first select Expressions mode, see the Node Table tutorial (page 62). Next, we activate
the expression text field by clicking it by the left mouse button. Finally, we type the string “NM + NF” (without the
quotation characters), using the keyboard. Figure 1 shows the resulting table for node NI with this expression and the
resulting CPT, where the numbers displayed are derived from the expression by selecting menu item “Show as table”
from the “Expressions” submenu of the “Functions” menu.

Figure 1: A CPT specified via an expression. The CPT is specified for a discrete chance node NI that has parents NM
and NF.

Fair or Fake Die?

As another example, consider the problem of computing the probabilities of getting n 6’s in n rolls with a fair die
and a fake die, respectively. A random variable, X, denoting the number of 6’s obtained in n rolls with a fair die is
binomially distributed with parameters (n, 1/6). Thus, the probability of getting k 6’s in n rolls with a fair die is P(X =
k), where P is a Binomial(n, 1/6). Assuming that for a fake die the probability of getting 6 eyes in one roll is 1/5, the
probability of getting k 6’s in n rolls with a fake die is Q(X = k), where Q is a Binomial(n, 1/5).

A Bayesian-network model of this problem is shown in Figure 2, where the node n6s (labeled “# 6’s”) depends on
the number of rolls, represented by the node n_rolls (labeled “# rolls”), and on the probability of the die being fake,
represented by the node fake_die (labeled “Fake die?”). Now, if we let n_rolls be a numbered node with states 1,
2, 3, 4, 5, let fake_die be a boolean node, and let n6s be a numbered node with states 0, 1, 2, 3, 4, 5, then P(n6s |
n_rolls, fake_die) can be specified very elegantly using the expression P(n6s | n_rolls, fake_die) = Binomial (n_rolls,
if (fake_die, 1/5, 1/6)).

74 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: A Bayesian-network model for the fake die problem.

To specify that expression, we may proceed as in the Number of People (page 74) example or we may wish to use the
Expression Builder (page 256) (activated by selecting the “Build Expression” item of the “Expressions” submenu of
the “Functions” menu) . The result of the specification and the derived probabilities are shown in Figure 3.

Figure 3: The CPT for the fake die problem specified very compactly using a simple expression.

Notice that we could equivalently specify P(n6s | n_rolls, fake_die) = if (fake_die, Binomial (n_rolls, 1/5), Bino-
mial(n_rolls, 1/6)).

© Copyright 2020, HUGIN EXPERT A/S 75

HUGIN Graphical User Interface Documentation, Release 8.9

Discretization of a Random Variable

Assume that P(C1 | C2) can be approximated by a Normal distribution with mean given by C2 and with variance 1,
where C2 is an interval variable with states [-5,-1), [-1,0), [0,1), [1,5). If the discretization of C1 given by the intervals
[-infinity,-5), [-5,-2), [-2,0), [0,2), [2,5), [5,infinity) is found to be suitable, then we can specify P(C1 | C2) simply as
Normal(C2, 1), see Figure 4.

Figure 4: The CPT for variable C1 specified through discretization of a Normal distribution with mean given by the
(interval) parent variable C2 and with variance 1.

If, in addition, C1 has another parent, say C3, which is a labelled node with states, say, “State 1” and “State 2” and
that the variance of the Normal distribution is 1 if C3 is in state “State 1” and 1.5 if C3 is in state “State 2”, then we
can define C3 as a so-called model node, which allows us to specify different expressions for the different states of
C3, see Figure 5.

Figure 5: Similar to Figure 4, except that C1 has got a new parent, C3, defined as a model node, allowing the
specification of different expressions for the different states of C3.

Notice that the use of model nodes is not strictly necessary, as we can alternatively condition on the states of the
(model) node(s). The use of model nodes, however, often makes the specification much less cluttered and easier to
read and maintain. For example, if we don’t specify C3 as a model node, P(C1 | C2, C3) can be specified through the
expression P(C1 | C2, C3) = if (C3 == “State 1”, Normal (C2, 1), Normal (C2, 1.5)), see Figure 6.

76 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 6: Similar to Figure 5, except that instead of specifying C3 as a model node the two expressions are merged
into one expression, where we condition on the states of C3.

Operators and Functions

The basic operators and functions available for composing expressions are list below.

Binary Numeric Operators

The following binary (infix) operators can be applied to numeric expressions.

• + (addition)

• - (subtraction)

• * (multiplication)

• / (division)

• ^ (power)

Examples:

• C1 + C2

• C1 ^ 3

where C1 and C2 are numeric nodes (i.e., numbered nodes and/or interval nodes).

Unary Numeric Operators

An numeric expression can be negated using the unary negation operator:

• - (negation)

© Copyright 2020, HUGIN EXPERT A/S 77

HUGIN Graphical User Interface Documentation, Release 8.9

Binary Comparison Operators

The following binary (infix) operators can be used for comparing labels (i.e., strings), numbers, and Booleans (both
operands must be of the same type). Only the equality operators (i.e., = and !=) may be applied to labels and Boolean
expressions. Each of the operators returns a Boolean value.

• = (equals)

• == (equals)

• != (not equals)

• <> (not equals)

• < (less than)

• > (greater than)

• <= (less than or equals)

• >= (greater than or equals)

Examples:

• C1 == C2

• C1 > 5

where C1 and C2 are numeric nodes (i.e., numbered nodes and/or interval nodes).

Min and Max Functions

The following functions compute the minimum or maximum of a list of numeric expressions.

• min(x1, x2, . . . , xn) returns the minimum of the argument expressions.

• max(x1, x2, . . . , xn) returns the maximum of the argument expressions.

Examples:

• min(C1, C2, 10)

• max(min(C1, C2, 10), max(C3, C4))

where C1, . . . , C4 are numeric nodes (i.e., numbered nodes and/or interval nodes).

Standard Mathematical Functions

The following list contains standard mathematical functions, which can be applied to a single numeric expression.

• log(x) returns the natural (i.e., base e) logarithm to x.

• log2(x) returns the base 2 logarithm to x.

• log10(x) returns the base 10 logarithm to x.

• exp(x) returns the exponential to x (i.e., e^x).

• sin(x) returns the sine of x.

• cos(x) returns the cosine of x.

• tan(x) returns the tangent of x.

• sinh(x) returns the hyperbolic sine of x.

78 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• cosh(x) returns the hyperbolic cosine of x.

• tanh(x) returns the hyperbolic tangent of x.

• sqrt(x) returns square root of x.

• abs(x) returns the absolute value of x.

Examples:

• log(C1)

• abs(sin(C1))

where C1 is a numeric node (i.e., a numbered node or an interval node).

Floor and Ceiling Functions

The floor and ceiling functions round the result of real numeric expressions to integers.

• floor(x) returns the greatest integer less than or equal to x.

• ceil(x) returns the smallest integer greater than or equal to x.

Examples:

• floor(C1 * C2)

• ceil(C1 ^ 2)

where C1 and C2 are numeric nodes (i.e., numbered nodes and/or interval nodes).

Modulo Function

The modulo function gives the remainder of a division of two numeric expressions. Of course, the divisor expression
must be non-zero.

• mod(x,y) returns x - y * floor(x / y), where x and y can be arbitrary real numbers with y != 0.

Example:

• mod(C1, C2 ^ 2)

where C1 and C2 are numeric nodes (i.e., numbered nodes and/or interval nodes).

If-Then-Else

Conditional expression (with three arguments) can be specified:

• if(px, tx, fx), where px must be a Boolean expression, and the second and third arguments must have the same
type. If px evaluates to ‘true’, the value of expression tx is returned; otherwise, the value of expression fx is
returned. The type of the if-expression is the type of tx and fx.

Examples:

• if(FakeDie, Binomial(n, 1/2), Binomial(n, 1/6))

• if(C1 == C2, Distribution(1, 2), Distribution(1, 3))

where FakeDie is a Boolean node, n is a numeric node, and C1 and C2 are nodes of arbitrary (but identical) type.

© Copyright 2020, HUGIN EXPERT A/S 79

HUGIN Graphical User Interface Documentation, Release 8.9

Logical Operators

The following standard logical operators are available. They all take Boolean expressions as arguments.

• and(x1, x2, . . . , xn) returns ‘true’ if all argument expressions evaluate to ‘true’.

• or(x1, x2, . . . , xn) returns ‘true’ if at least one of the argument expressions evaluate to ‘true’.

• not(x) returns ‘true’ if x evaluates to ‘false’; otherwise, returns ‘false’.

The evaluation of the argument expressions of ‘and’ is done sequentially, and the evaluation terminates whenever an
argument evaluates to ‘false’. Similarly, the evaluation of the argument expressions of ‘or’ terminates whenever an
argument evaluates to ‘true’.

Example:

• and(C1, or(C2, not(C3)))

where C1, C2 and C3 are Boolean nodes.

Continuous Statistical Distributions

A number of continuous statistical distributions are available. See Continuous Distributions (page 81) for details.

• Normal

• LogNormal

• Beta

• Gamma

• Exponential

• Weibull

• Uniform

• Triangular

• PERT

Discrete Statistical Distributions

A number of discrete statistical distributions are available. See Discrete Distributions (page 83) for details.

• Binomial

• Poisson

• Negative Binomial

• Geometric

• Distribution

• Noisy OR

80 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Statistical Distributions

Continuous Distributions

The following continuous distribution functions are available for interval nodes only.

© Copyright 2020, HUGIN EXPERT A/S 81

HUGIN Graphical User Interface Documentation, Release 8.9

Example:

• Normal(C1, C2) - specifies the conditional probabilities for an interval node from a Normal distribution with
mean given by the value of the numeric parent node C1 and variance given by another numeric parent node C2.

82 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Truncation operator:

In addition a truncation operator can be applied to a continuous statistical distribution in order to form a truncated
distribution. The operator takes either two or three arguments. When three arguments are specified, the first and third
arguments must be numeric expressions denoting, respectively, the left and right truncation points, while the second
argument must denote the distribution to be truncated. Either the first or the third argument can be omitted. Omitting
the first argument results in a right-truncated distribution, and omitting the third argument results in a left-truncated
distribution.

Example:

• truncate (-4, Normal (0, 1), 4) - specification of a truncated normal distribution. The distribution is truncated at
the left at -4 and at the right at 4.

• truncate (4, Normal (0, 1)) - A left truncated (at -4) normal distribution.

Discrete Distributions

A variety of discrete distribution functions can be specified. There are four standard statistical distribution functions,
which all must be specified for numeric nodes. The special function called ‘Distribution’ allows one to specify arbitrary
distribution functions, where an expression must be specified for each possible outcome of the variable in question.

Examples:

• Binomial(4, 0.2)

• NegativeBinomial(sqrt(10), 0.4)

• NoisyOR(C1, 0.1, C2, 0.05, true, 1) - specifies that a Boolean effect node is ‘true’ with probability 1 - 0.1 if
the Boolean cause (parent) node C1 is ‘true’ and C2 is ‘false’, 1 - 0.05 if the Boolean cause (parent) node C2 is
‘true’ and C1 is ‘false’, and 1 - 0.1*0.05 if both C1 and C2 are ‘true’. Further, it specifies that the effect node is
‘false’ with probability 1 if both C1 and C2 are ‘false’ (i.e., a leak probability of zero has been specified in this
example).

© Copyright 2020, HUGIN EXPERT A/S 83

HUGIN Graphical User Interface Documentation, Release 8.9

• Distribution(if(C1 = “State 1”, 3, 5), 2) - specifies the distribution for a binary node with a Labelled parent node
C1.

Syntax for Expressions

<Expression> ::= <Simple expression> <Comparison> <Simple expression> |

<Simple expression>

<Simple expression> ::= <Simple expression> <Plus or minus> <Term> |
<Plus or minus> <Term> |
<Term>

<Term> ::= <Term> <Times or divide> <Exp factor> |
<Exp factor>

<Exp factor> ::= <Factor> ^ <Exp factor> |
<Factor>

<Factor> ::= <Unsigned number> |
<Node name> |
<String> |
false |
true |
(<Expression>) |
<Operator> (<Expression sequence>)

<Expression sequence> ::= <Empty> | <Expression> [, <Expression>]*

<Comparison> ::= == | = | != | <> | < | <= | > | >=

<Plus or minus> ::= + | -

<Times or divide> ::= * | /

<Operator> ::= truncate | Normal | LogNormal | Beta | Gamma | Exponential | Weibull |
→˓Uniform | Triangular | PERT

Binomial | Poisson | NegativeBinomial | Geometric | Distribution |
NoisyOR | min | max | log | log2 | log10 | exp |
sin | cos | tan | sinh | cosh | tanh |
sqrt | abs | floor | ceil | mod |
if | and | or | not

84 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

3.2.10 The Case and Data File Formats

The HUGIN Graphical User Interface supports case and data files to save and load cases and data. A case file consists
of a single case, i.e., a set of evidence on a subset of the nodes in a network, whereas a data file consists of a set of
cases. The format of a case file is different from the format of a data file.

The Case File Format

The HUGIN Graphical User Interface supports saving and loading of case files. A case file contains a description of a
single evidence scenario such as this

Figure 1: A sample case file.

Case files are useful for storing a set of evidence to be propagated in the network.

A more elaborate description case files can be found here (page 370).

The Data File Formats

The HUGIN Graphical User Interface supports saving and loading of data files. A data file contains a set of cases as
this

Figure 2: A sample data file.

Data files are useful for storing a set of cases to be propagated in the network or more commonly to be used for
learning.

A more elaborate description data files can be found here (page 371).

© Copyright 2020, HUGIN EXPERT A/S 85

HUGIN Graphical User Interface Documentation, Release 8.9

3.2.11 Case Generator Tutorial

To generate (simulated) cases based on the current conditional probability distributions (CPTs) push the Case Gener-
ator Button, which is shown in Figure 1, or select the Generate Cases item in the File menu.

Figure 1: The Case Generator Button.

By default, the HUGIN Graphical User Interface chooses to create 10,000 cases with 5 percent missing values. The
user can change these values. To generate the cases one of the algorithm: MCAR or MAR must be selected. Figure 2
shows the Case Generator Window.

Figure 2: The Case Generator Window.

Now, the HUGIN Graphical User Interface will generate a set of cases and store these in a plain text file. Figure 3
shows the content of such a file where the cases are generated based on the Chest Clinic network.

86 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: The Content of a Case File.

© Copyright 2020, HUGIN EXPERT A/S 87

HUGIN Graphical User Interface Documentation, Release 8.9

3.2.12 The Net Language

The HUGIN Development Environment uses a special-purpose language, called the net language, for description of
networks and LIMID models. This language allows the user to create complete descriptions of Bayesian networks and
LIMID models, containing specifications of the structure of the network model, the conditional probability, the policy,
and the utility functions.

This chapter describes the third revision of the net language. This revision is substantially different from the first
revision, and somewhat different from the second revision. The reason is that the first revision of the language used
a fixed format (i.e., the semantics of the different elements were determined by their position within the description).
This implied that it was impossible to extend this language in such a way that descriptions in the old language retained
their meaning in the new language. The second revision was designed with that goal in mind. This third revision
contains a minor modification of the second revision, enabling specification of object-oriented networks (i.e., a net file
now can contain instance nodes (page 209), and means for specifying interface nodes (page 213)).

Nodes

The basic element of a network model is the node. In ordinary Bayesian networks, a node represents a random variable
(discrete or continuous). In a LIMID model, a node may also represent a decision, controlled by the decision maker,
or a utility function, which is used to assign preferences to different configurations of variables. In object-oriented
networks, there is an additional category of nodes (page 196), namely instance nodes, representing instances of other
networks; that is, an instance node represents a sub-network in the network in which it appears.

Example 1

The following node description is taken from the “Chest Clinic” example (Lauritzen & Spiegelhalter 1988) (page 519)

node T
{

states = ("yes" "no");
label = "Has tuberculosis?";
position = (25 275);

}

• This describes a binary random variable named T, with states labeled “yes” and “no”. The description also gives
the label and position, which are used by the HUGIN Graphical User Interface.

A node description is introduced by one of the keywords: [<prefix>] node, decision, utility, or instance where the
optional prefix on node is either discrete or continuous (omitting the prefix causes discrete to be used as default).
The keywords are followed by a name that must be unique within the model. For instance nodes further follows the
name of the network (or class) of which it is an instance, and the bindings of the input nodes of the instance node. To
be precise, the syntax of is

instance <name> : <class> ({<input> = <node>}*)

where <class> is the name of the network of which <name> is an instance, and where {<input> = <node>}* denotes a
comma separated list of zero or more elements of the kind <input> = <node>, where <input> is the name of an input
node in <class> and <node> is the name of a node appearing in the network or an output node of an instance of a
network included in the network. Note that <input> and <node> must be type consistent; i.e., be of the same category,
kind, and subtype, and have identical state labels/values if they are discrete.

88 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Example 2

The following specifies an instance node with name Person_1. This node represents an instance of a network named
Person, and the nodes named I and E have been bound to the input nodes named Income and Education, respectively,
of the instance of Person used in our network.

instance Person_1 : Person (Income = I, Education = E)
{

label = "Bill Yates";
position = (101 156);

}

• The description also gives the label and position, which are used by the HUGIN Graphical User Interface.

Then, for all kinds of nodes, follows a sequence of name/value pairs of the form

<name> = <value>;

enclosed in braces.

The example shows the field names currently defined in the net language for nodes: states, label, and position. All of
these fields are optional; if any field is absent, a default value is supplied.

• states specifies the states of the node (here, the decisions of a decision node are also referred to as states); the
states are indicated by a list of strings. The list must be non-empty. The strings in the list comprise the labels
of the individual states; the labels need not be unique (can even be empty strings) for the node. Only the length
of the list (i.e., the number of states) is relevant to the HUGIN Decision Engine; the state labels are, however,
used by the companion system, the HUGIN Graphical User Interface. The default value is a list of length one,
containing an empty string (i.e., the node will have one state). The states field is not allowed for utility and
continuous nodes.

• label is a string that is used by the HUGIN Graphical User Interface when displaying the nodes. The label is not
used by the inference engine. The default value is the empty string.

• position is a list of integers (the list must have length two). It indicates the position within the graphical display
of the network by the HUGIN Graphical User Interface. The position is not used by the inference engine. The
default position is at (0,0).

Apart from these fields, you can specify your own fields for nodes. These can be used for a specific application needing
some extra information about the nodes.

Example 3

In this situation the T node has being assigned the application specific field MY_APPL_my_field.:

node T
{

states = ("yes" "no");
label = "Has tuberculosis?";
position = (25 275);
MY_APPL_my_field = "1000";

}

The value of such application specific fields can only be text strings encapsulated in quote characters (“) (see section
“Lexical Matters” (page 95) for precise definition of text strings).

It would be regarded as good style to start field name with an application specific prefix to avoid confusion (in example
3 the MY_APPL prefix).

© Copyright 2020, HUGIN EXPERT A/S 89

HUGIN Graphical User Interface Documentation, Release 8.9

Example 4

In the HUGIN Graphical User Interface some extra fields are used to save descriptions of both nodes and their states.
These are the fields prefixed with HR.:

node T
{

states = ("yes" "no");
label = "Has tuberculosis?";
position = (25 275);
HR_State_0 = "Yes, the patient HAS tuberculosis.";
HR_State_1 = "No, the patient has NOT tuberculosis.";
HR_Desc = "Represents the fact that the patient has\

tuberculosis or not.";
}

The Structure of the Model

The structure (i.e., the edges of the underlying graph) is specified indirectly. We have two kinds of edges: directed and
undirected edges.

Example 5

This is a typical specification of directed edges:

potential (A | B C) { }

This specifies that node A has two parents: B and C. That is, there is a directed edge from B to A, and there is a directed
edge from C to A.

The model may also contain undirected edges. Such a model is called a chain graph model.

Example 6

potential (A B | C D) { }

This specifies that there is an undirected edge between A and B. Moreover, as usual, it specifies that both A and B have
C and D as parents.

If there are no parents, the vertical bar may be omitted.

A maximal set of nodes, connected by undirected edges, is called a chain graph component.

Not all graps are permitted. The following restrictions are imposed on the structure of the network.

The graph may not contain any (directed) cycles.

90 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Example 7

The following specification is not allowed, because of the cycle 𝐴→ 𝐵 → 𝐶 → 𝐴.

potential (B | A) { }
potential (C | B) { }
potential (A | C) { }

However, the following specification is legal.

potential (B | A) { }
potential (C | B) { }
potential (C | A) { }

Example 8

The following specification is not allowed either, since there is a cycle 𝐴 → 𝐵 → 𝐶 𝐴 (the edge between A and C
counts as “bidirectional”).

potential (B | A) { }
potential (C | B) { }
potential (A C) { }

However, the following specification is legal.

potential (A | B) { }
potential (C | B) { }
potential (A C) { }

Continuous chance nodes are not allowed in LIMID models, i.e., there cannot be continuous nodes in a net also
containing utility or decision nodes.

Utility nodes may not have any children in the graph. This implies that utility nodes may only appear to the left of the
vertical bar (never to the right).

Undirected edges can only appear between discrete chance nodes.

Continuous nodes can only have continuous nodes as children.

If a decision node appears to the left of the vertical bar, it must appear alone. In this case, so-called informational links
are specified; such links specify which variables are known when the decision is to be made.

Example 9

Assume we want to specify a LIMID with two decisions, D1 and D2, and with three discrete chance variables, A, B,
and C. First, A is observed; then, decision D1 is made; then, B is observed; finally, decision D2 is made. This sequence
of events can be specified as follows:

potential (D1 | A) { }
potential (D2 | D1 B) { }

Finally, no node may be referenced in any potential-specification before it has been declared by a node-, decision-, or
a utility-specification.

© Copyright 2020, HUGIN EXPERT A/S 91

HUGIN Graphical User Interface Documentation, Release 8.9

Potentials

We also need to specify the quantitative part of the model. This part consists of conditional probability functions
for random variables, policies for decision nodes and the values a utility function may assume. Thus, we distinguish
between discrete probability, continuous probability, and utility potentials.

All types of potentials are different in the numerical specification between the braces of the potential-specification.

Example 10

The following description is taken from the “Chest Clinic” example and specifies the conditional probability table of
the discrete variable T.

potential (T | A)
{

data = ((0.05 0.95) % A=yes
(0.01 0.99)); % A=no

}

This specifies that the probability of tuberculosis given a trip to Asia is 5 %, whereas it is only 1 % if the subject has
not been to Asia. The data field may also be specified as an unstructured list of numbers.

potential (T | A)
{

data = (0.05 0.95 % A=yes
0.01 0.99); % A=no

}

As the example shows, the numerical data is specified through the data field of a potential-specification. This data has
the form of a list of real numbers. The structure of the list must either correspond to that of a multi-dimensional table
with node list comprised of the parent nodes followed by the child nodes, or it must be a flat list with no structure at
all. The “layout” of the data list is row-major (see section “Row-major Representation” (page 95)).

Example 11

potential (D E F | A B C) { }

The data field of this potential-specification corresponds to a multi-dimensional table with dimension list <A, B, C, D,
E, F>.

The data field of a utility potential has only the dimension of the nodes on the right side of the vertical bar.

Example 12

The following description is taken from the “Oil Wildcatter” example and shows a utility potential. Drillpay is a utility
node while Oil is a discrete chance node with three states and Drill is a decision node with two states.

potential (Drillpay | Oil Drill)
{

data = ((-70 0) % dr
(50 0) % wt
(200 0)); % sk

}

92 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

The data field of this potential-specification corresponds to a multi-dimensional table with dimension list < Oil, Drill>.

The table in the data field of a continuous probability potential has the dimensions of the discrete chance nodes to the
right of the vertical bar. All the discrete chance nodes must be listed first on the right side of the vertical bar (then
follows the continuous nodes). However, the items in the multi-dimensional table are no longer values but instead
continuous distribution functions. Currently, only Gauss normal distribution can be used. A normal distribution can
be specified by its mean and variance. In the following example, a continuous probability potential is described.

Example 13

Suppose A is a continuous node with parents B and C which are both discrete. Also, both B and C have two states: B
has states b1 and b2 while C has states c1 and c2.

potential (A | B C)
{

data = ((normal (0, 2) % b1 c1
normal (3, 2)) % b1 c2

(normal (1, 2) % b2 c1
normal (2, 2))); % b2 c2

}

The data field of this potential-specification is a table with the dimension list < B, C>. Each entry contains a probability
distribution for the continuous node A.

All entries in the above example contains a Gauss normal distribution (the only continuous distribution currently
available). A normal distribution is specified with the keyword normal followed by a list of two parameters. The first
parameter is the mean and the second is the variance of the normal distribution.

Example 14

In this example, suppose A is a continuous node with one discrete parent B and one continuous parent C. B has two
states b1 and b2 and C has a normal distribution.

potential (A | B C)
{

data = (normal (1 + C, 2) % b1
normal (1 + 2 * C, 2)); % b2

}

The data field of this potential-specification is a table with the dimension list (B is the only discrete parent which
is then listed first on the right side of the vertical bar). Each entry again contains a continuous distribution function
for A. The influence of C on A now comes from the use of C in an expression specifying the mean parameter of the
normal distributions.

Only the mean parameter of a normal distribution can be specified as a an expression. The variance parameter must be
a numeric constant. The operators allowed in the expression are +, -, and * (addition, subtraction, and multiplication).

Since a decision node has no function assigned, it cannot have a data field. Thus, the decision potential specification
does not really specify a potential but is rather a trick for specification of informational links.

If the data field is omitted from a potential-specification, a list of ones is supplied for discrete probability poten-
tials, whereas a list of zeros is supplied for utility potentials. For a continuous probability potential, a list of normal
distributions with both mean and variance set to 0 is supplied.

The values of the data field of discrete probability potentials may only contain non-negative numbers. In the specifi-
cation of a normal distribution for a continuous probability potential, only non-negative numbers are allowed for the

© Copyright 2020, HUGIN EXPERT A/S 93

HUGIN Graphical User Interface Documentation, Release 8.9

variance parameter. There is no such restriction on the values of utility potentials or the mean parameter of a normal
distribution.

Global Information

Information pertaining to the Bayesian network or LIMID model as a whole can be specified at the beginning of the
description, initiated by the keyword class (in the second revision of the net language, this keyword was net) - see
Example 15. Notice that, except for the first line (i.e., “class <net name>”), the entire specification must be enclosed
in curly braces (this syntax differs from the syntax used in the second revision).

Example 15

class test
{

inputs = ();
outputs = ();
node_size = (80 40);
...

}

This specifies lists of names of nodes of the network that serves as input nodes and output nodes, respectively. It also
specifies that nodes are drawn in the HUGIN Graphical User Interface with a width of 80 pixels and a height of 40
pixels.

Currently, only the inputs, outputs, and node_size fields have been defined for net-specifications. However, as with
nodes, you can add all the additional fields you want.

Example 16

The newest version of the HUGIN Graphical User Interface uses a series of application specific fields. Some of them
are shown here:

class
{

inputs = ();
outputs = ();
node_size = (80 40);
HR_Grid_X = "10";
HR_Grid_Y = "10";
HR_Grid_GridSnap = "1";
HR_Grid_GridShow = "0";
HR_Font_Name = "Arial";
HR_Font_Size = "-12";
HR_Font_Weight = "400";
HR_Font_Italic = "0";
HR_Propagate_Auto = "0";
...

}

The HUGIN Graphical User Interface uses the prefix HR on all fields.

94 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Lexical Matters

A name has the same structure as an identifier in the C programming language. This means that a name is a non-empty
sequence of letters and digits, beginning with a letter. In this context, the underscore character (_) is considered a
letter. The case of letters is significant. The sequence of letters and digits forming a name extends as far as possible; it
is terminated by the first non-letter/digit character (for example, braces or whitespace).

A string is a sequence of characters not containing a quote character (”) or a newline character; its start and end are
indicated by quote characters.

A number is comprised of an optional sign, followed by a sequence of digits, possibly containing a decimal point
character, and an optional exponent field containing an ‘E’ or ‘e’ followed by a possibly signed integer.

Comments can be placed in a net description anywhere (except within a name, a number, or other multi-character
lexical elements). It is considered equivalent to whitespace. A comment is introduced by a percent character (%) and
extends to the end of the line.

Row-Major Representation

This section describes the row-major “layout” of a table. If you do not have interest in this particular subject, you can
just ignore it.

To find a value corresponding to a specific configuration in the row-major representation of a table, we index the values
from 0 to s-1 where s is the number of values in the list. Suppose that the corresponding list of nodes is (A1, A2,. . . ,
An) and that node Ai has si states indexed from 0 to si-1. Then,

𝑠 =

𝑛∏︁
𝑖=1

𝑠𝑖

What we want is the index x of a configuration (a1, a2,. . . , an). Now, suppose that the state index of ai is ji (0 ≤ 𝑗𝑖 ≤
𝑠𝑖− 1). Then, x can be computed as

𝑥 =

𝑛∑︁
𝑖=1

𝑎𝑖𝑗𝑖

where

𝑎𝑖 =

{︃
𝑎𝑖𝑗𝑖 if 𝑖 < 𝑛,

1 if 𝑖 = 𝑛.

3.2.13 Structure Learning Tutorial

The HUGIN Graphical User Interface provides the user with powerful structure learning capabilities (i.e., learning
the structure of a Bayesian-network model from data (a set of cases)). Structure learning can be performed via the
Learning Wizard (page 249) (which allows data to be read from data files, to be preprocessed, etc) or by activating one
of the structure learning algorithms directly. In this tutorial, the structure learning algorithms are activated directly.

There are several algorithms to choose from, however this example will only look at the NPC algortihm (page 231)
and the PC algorithm (page 230). In this tutorial we shall assume that you already know how these algorithms work.
Refer to the “Help” button on the bottom left of the window for any details on the algorithms.

Consider the data file asia.dat sampled from the Chest Clinic network shown in Figure 1.

© Copyright 2020, HUGIN EXPERT A/S 95

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The structure from which the data were sampled.

Figure 2 shows the first few lines of the data file, which consists of 10000 cases altogether.

Figure 2: First few lines of the data file.

The structure learning functionality is available under the “File” menu and through the structure learning button of the
tool bar of the Main Window (page 174). The structure learning button is shown in Figure 3.

The structure learning functionality is available under the “Wizards” menu as shown in Figure 3. This wizard will take
you through a series of steps required in order to use the feature.

96 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: The option to activate the structure learning functionality.

When said option is chosen, the structure learning dialog appears (see Figure 4).

© Copyright 2020, HUGIN EXPERT A/S 97

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: The structure learning dialog.

Press the “Load File” button and choose a file from which the structure is to be estimated. When a file has been
selected the “Next” button gets enabled. When the “Next” button is clicked, the wizard shows you a node summary
of your file and if you click “Next” again you can use the Feature Selection tool to narrow the set of nodes. For this
example, we just click “Next” again without selecting any nodes. Next you need to specify any structure constraints,
meaning any known dependencies or independencies in the data set, see Figure 5. Once again we just click “Next”.

98 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 5: The Structure Constraints dialog.

On the next page you need to specify an algorithm for the structure learning to perform.

© Copyright 2020, HUGIN EXPERT A/S 99

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 6: The Structure Learning dialog

First chose the PC algorithm and assert the level of significance (page 118) for the statistical independence tests
performed during structure learning. Then click the “Next” button to the Data Dependencies dialog where you at last
can detect the relative strengths of the dependencies (links) found in the data. You may use the slider to the right on
the window.

100 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 7: The Data Dependences dialog

Once finished press “Next” one last time to start the structure learning algorithm and load the network to the network
pane. Here you should be able to manoeuvre the nodes to look like figure 8.

© Copyright 2020, HUGIN EXPERT A/S 101

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 8: The structure learned by the PC algorithm

If the PC algorithm was selected, the result should appear as in Figure 8. Obviously, the structure of the original
network has not been recalled perfectly. The problem is that variable E depends deterministically on variables T and L
through a logical OR (E stands for Tuberculosis or Lung cancer). This means that (i) T and X are conditionally inde-
pendent given E, (ii) L and X are conditionally independent given E, and (iii) E and X are conditionally independent
given L and T. Thus, the PC algorithm concludes that there should be no links between T and X, between L and X,
and between E and X. Obviously, this is wrong. The same reasoning leads the PC algorithm to leave D unconnected
to T, L, and E. Also, as the PC algorithm directs links more or less randomly (respecting, of course, the conditional
independence and dependence statements derived from data), the directions of some of the links are wrong.

If the NPC algorithm NPC algortihm (page 231) was selected and there are uncertain links or links for which the
directionality could not be determined for sure, the user will be presented with an intuitive graphical interface for
resolving these structural uncertainties (see the description of the NPC algorithm for details). Figure 9 shows the
(intermediate) result of the NPC structure learning algorithm applied to the same data.

102 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 9: The intermediate structure learned by the NPC algorithm

Depending on the choices made by the user, many different final structures (including the original structure shown in
Figure 1) can be generated from this intermediate structure.

The HUGIN Graphical User Interface implements a number of different algorithms for learning the structure of a
Bayesian network from data, see Structure Learning for more information.

Once the structure of the Bayesian network has been generated, the conditional probability distributions of the network
can be estimated from the data using the EM-learning algorithm (page 334), see the EM tutorial (page 103).

3.2.14 EM Learning Tutorial

It often happens that many (or all) of the probability distributions of the variables in a Bayesian network are unknown,
and that we want to learn these probabilities (parameters) from data (i.e., series of observations obtained by performing
experiments, from the literature, or from other sources). An algorithm known as the EM (Estimation-Maximization)
algorithm (page 334) is particularly useful for such parametric learning, and it is the algorithm used by HUGIN for
learning from data. EM tries to find the model parameters (probability distribution) of the network from observed (but
often not complete) data.

The EM Algorithm (page 334) is well-suited for parameter estimation in batch (i.e., estimation of the parameters of
conditional probability tables from a set of cases) whereas the Adaptation Algorithm (page 228) is well-suited for
sequential parameter update.

© Copyright 2020, HUGIN EXPERT A/S 103

HUGIN Graphical User Interface Documentation, Release 8.9

Experience Tables In EM Learning

Experience Tables (page 216) are used to specify prior experience on the parameters of the conditional probability
distributions. Notice that EM parameter estimation is disabled for nodes without an experience table.

Example EM Learning

We use the example from the Experience Tables (page 216) to illustrate the use of EM learning. The Bayesian network
is shown in Figure 1.

Go to Chest Clinic to learn more about the domain of this network.

Figure 1: Bayesian-network representation of “Chest Clinic”.

To illustrate the use of EM learning, we assume that the structure of the network is known to be as shown in Figure 1.
In addition, assume that the conditional probability distribution of “Tuberculosis or cancer” given “Has tuberculosis”
and “Has lung cancer” is known to be a disjunction (i.e., the child is in state yes if and only if at least one of the parents
is in state yes).

We do not assume any prior knowledge on the remaining set of distributions. Thus, we set all entries of the condi-
tional probability distributions to one except for the “Tuberculosis or cancer” node. This will turn all the probability
distributions for all but the “Tuberculosis or cancer” node into uniform distributions because HUGIN will normalize
the values of the distribution tables if the sum of the column values differs from one. A uniform distribution signifies
ignorance (i.e., we have no a priori knowledge about the probability distribution of a variable). Figure 2 shows the
initial marginal probability distributions prior to parameter estimation.

104 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Probability distributions after setting all values in the conditional probability tables to 1.

Now we will try to learn the probabilities from a data file associated with this network. The EM-Learning Wizard will
help guide you through the process. Go to Edit Mode and select the EM-Learning Wizard from the Wizard menu as
shown in Figure 3.

Figure 3: The option to activate the EM-Learning functionality.

© Copyright 2020, HUGIN EXPERT A/S 105

HUGIN Graphical User Interface Documentation, Release 8.9

Click the “Load File” button and choose a file from which the conditional distribution probabilities are to be learned.
Choose the asia.dat file, which is located in the same directory as the network. The first few lines of the file are
shown below.

Figure 4: The first few lines of the asia.dat file.

The first line is the name of the nodes as in the network, the rest are the evidence for each experiment/observation.
After the file is selected click the “Load” button and then the “Next” button to open the prior distribution knowledge
dialog as shown in Figure 5. Now you must create Experience Tables (page 216) for all variables except Turberculosis
or cancer, by selecting each of them and pressing the “Create” button under Table Existence as shown in Figure 6.

106 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 5: the Prior Distribution Knowledge dialog

Once you have created an experience table for all variables, click the “All” button under Initialize. This will start the
EM-Learning algorithm. Based on the data, the EM-algorithm computes the conditional probability distribution for
each node. Figure 5 shows the new conditional probability distribution after EM-learning finishes. As can be seen
from Figure 6, all the conditional probability distribution values have changed to reflect all the cases in the case file.

© Copyright 2020, HUGIN EXPERT A/S 107

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 6: The estimated marginal probability distributions.

Figure 7 shows the marginal probability distributions for the network from which the set of cases was generated. Note
that the probability distribution shown here is for the original Chest Clinic network.

108 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 7: marginal probability distributions of the original network

The EM algorithm can both estimate the conditional probability tables of discrete chance nodes and the conditional
probability densities of continuous chance node.

3.2.15 Adaptation Tutorial

Adaptation is the process of refining the (conditional) probabilities specified for a Bayesian network by taking into
consideration real experiment outcomes or cases. For example, assume we have a Bayesian network relating the causal
relationships between a set of diseases and a set of symptoms. Every time a patient is diagnosed, the information about
his/her symptoms and the diseases he/she is suffering from can be used to adapt the network’s probabilities. Using the
HUGIN Graphical User Interface, we can adapt a network by using experience tables and/or fading tables. Below is
a detailed discussion of how to perform adaptation in the HUGIN Graphical User Interface, including an overview of
the computations performed. The mathematics is presented for those who want to get a deeper understanding of the
adaptation process and can be skipped without any discontinuity in the reading. The Adaptation Algorithm (page 228)
is well-suited for sequential parameter update whereas the EM Algorithm (page 334) is well-suited for parameter
estimation in batch (i.e., estimation of the parameters of conditional probability tables from a set of cases).

© Copyright 2020, HUGIN EXPERT A/S 109

HUGIN Graphical User Interface Documentation, Release 8.9

Experience Tables In Adaptation

Experience Tables (page 216) are used to specify prior experience on the parameters of the conditional probability
distributions. Notice that adaptation is disabled for nodes without an experience table and parent configurations that
have a zero experience count.

Example of Adaptation

We use the example from the Experience Tables (page 216) to illustrate the use of adaptation. The Bayesian network
is shown in Figure 1. download Chest Clinic to learn more about the domain of this network.

Figure 1: Bayesian-network representation of “Chest Clinic”.

The conditional probability distribution (represented by a conditional probability table (CPT)) of the variable Smoker
(S) prior to any adaptation is (0.5,0.5). We assume that the experience count for Smoker has been set to 10 as in the
example. Now compile the network, enter the observation (evidence) that variable S is in state 0 (“yes”), and click
the adaptation button . Click the adaptation button four more times, denoting that this observation has been made five
times.

110 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The adapdation option.

Now, if we reinitialize the network, we will see that the CPT of variable S has changed from (0.5,0.5) to (0.667,0.333).
Also, all the variables that are not independent of S have different probability distributions. In general, the CPTs of
the variables ancestral to the observed variables may be updated when the adaptation button is clicked, provided their
experience tables exist and the counts are greater than zero. Note that deleting or resetting the experience tables does
not affect the CPTs of the variables.

To understand why the values have changed, it’s easier to see the experience table again. If we go to Edit Mode and
see the experience table for the “Smoker?” variable, we will see that the current experience count is 15, corresponding
to an initial count of 10 and having made 5 observations of the variable. Before adaptation began we had an experience
count of 10, and the probability distribution was (0.5,0.5), i.e., 5 of them were “yes”; and the other 5 were “no”.

The additional 5 counts all pertain to state “yes”. Therefore, the adapted probability distribution of “Smoker?” becomes

𝑃 (𝑆𝑚𝑜𝑘𝑒𝑟 = ”𝑦𝑒𝑠”) =
𝑁(”𝑦𝑒𝑠”)

(𝑁(”𝑦𝑒𝑠”) +𝑁(”𝑛𝑜”))
= 10/15 = 0.667,

where N(“x”) denotes the number of times we experienced state “x”. The result agrees with the values we saw. Below
is a definition of adaptation, which gives a concise description of what we have been doing so far.

To summarize, an adaptation step consists of entering evidence, propagating, and updating (adapting) the conditional
probability tables and the experience tables.

To make the experiments specified below, please close the network file, and choose “No” when the Hugin Graphical
User Interface shows the prompt to save the file, so that we can begin with the original file.

In the network of Figure 1, it is justified to add experience tables to all the variables in the domain except for “Tuber-
culosis or cancer”, since this variable is a logical OR and no experience can be gained on logical OR variables. After

© Copyright 2020, HUGIN EXPERT A/S 111

HUGIN Graphical User Interface Documentation, Release 8.9

we have added experience tables to all variables (by choosing “Add Experience Table to All Discrete Chance Nodes”),
we have to modify the experience counts because they are initially all zero. In our case, we add experience tables to
all variables in the network (except the “Tuberculosis or cancer” variable) and set the initial experience counts to 10.
The network is now ready for adaptation.

The experience table of a variable represents the experience counts of the parent configurations, as mentioned earlier.
Figure 3 shows the CPT and the experience table for “Has Bronchitis”.

Figure 3: The CPT and experience table for “Has Bronchitis” before adaptation.

The interpretation of Figure 3 is that we have observed the value of the “Has Bronchitis” 20 times, 10 of them when
“Smoker?” was in state “yes” and 10 when “Smoker?” was in state “no”. Combining this information with the CPT
of “Has Bronchitis”, we can get information about the initial experience of each individual state. Since there are 10
observations of “Has Bronchitis” when “Smoker?” was in state “yes” and

𝑃 (𝐻𝑎𝑠𝐵𝑟𝑜𝑛𝑐ℎ𝑖𝑡𝑖𝑠 = ”𝑦𝑒𝑠”|𝑆𝑚𝑜𝑘𝑒𝑟? = ”𝑦𝑒𝑠”) = 0.6,

we have

𝑁(𝐻𝑎𝑠𝐵𝑟𝑜𝑛𝑐ℎ𝑖𝑡𝑖𝑠 = ”𝑦𝑒𝑠”|𝑆𝑚𝑜𝑘𝑒𝑟? = ”𝑦𝑒𝑠”) = 0.6 * 10 = 6,

where we have used a new notation for N to conform with conditional probability notation. Similarly, for
Smoker?=”no” we have

𝑁(𝐻𝑎𝑠𝐵𝑟𝑜𝑛𝑐ℎ𝑖𝑡𝑖𝑠 = ”𝑦𝑒𝑠”|𝑆𝑚𝑜𝑘𝑒𝑟? = ”𝑛𝑜”) = 0.3 * 10 = 3,

giving the total individual state experience counts of

𝑁(”𝑦𝑒𝑠”) = 6 + 3 = 9

and .. math:: N(“No”) = 20 - 9 = 11.

With these values we can now compile the network and do some adaptation. Adaptation requires at least one variable
with an experience table in order to adapt the network. Note that it is not necessary to have non-zero experience counts
or to enter identical experience counts for every parent configuration. For instance, the initial experience counts could
be set to “10,0”. Note also that we don’t have to worry about the computations which we have been doing so far, as
they are only intended for users who want a deeper understanding of the adaptation process.

Let’s say we have observed five cases for which

• Variable S (Smoker?) is in state 0 (“yes”)

• Variable B (Has Bronchitis) is in state 0 (“yes”)

Then propagate this evidence. Next click the adaptation button five times as we have done before. Each time the
adaptation button is clicked the probability of this observation increases. Now reinitialise the network and observe the
conditional probability distribution of “Smoker?” as we did before. As before, the conditional probability distribution
has changed from (0.5,0.5) to (0.667,0.333) since the adaptation we just performed is the same as before in the context
of variable “Smoker?”. As for “Has Bronchitis?”, the new CPT and the updated experience table is shown in Figure 4.

112 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: The CPT and experience table for “Has Bronchitis” after adaptation.

The right hand columns of Figures 3 and 4 (i.e., P(Has Bronchitis = “yes” | Smoker? = “no”) and P(Has Bronchitis =
“no” | Smoker? = “no”)) haven’t changed. This is because in all the five adaptation steps that we ran, evidence was
entered that variable “Smoker?” was in state “yes”, giving no new information about the states of “Has Bronchitis”
when the state of “Smoker?” is “no”. We can see similar information also from Figure 4, where the experience under
“yes” has increased by 5 while the one under “no” remained the same.

On the other hand, the left side column (i.e., P(Has Bronchitis = “yes” | Smoker? = “yes”) and P(Has Bronchitis =
“no” | Smoker? = “yes”)) has changed, showing that some experience has been gained. Using the above results from
the computation before adaptation was performed, we have

𝑁(𝐻𝑎𝑠𝐵𝑟𝑜𝑛𝑐ℎ𝑖𝑡𝑖𝑠 = ”𝑦𝑒𝑠”|𝑆𝑚𝑜𝑘𝑒𝑟? = ”𝑦𝑒𝑠”) = 6 + 5 = 11

𝑁(𝑆𝑚𝑜𝑘𝑒𝑟? = ”𝑦𝑒𝑠”) = 15

𝑃 (𝐻𝑎𝑠𝐵𝑟𝑜𝑛𝑐ℎ𝑖𝑡𝑖𝑠 = ”𝑦𝑒𝑠”|𝑆𝑚𝑜𝑘𝑒𝑟? = ”𝑦𝑒𝑠”) = 11/15 = 0.7333

agreeing with the results displayed in the HUGIN Graphical User Interface.

Fading Tables

The adaptation procedures we have gone through so far gave equal weight to recent experiences and older ones (that
is why we were just adding and dividing as if they were observations done at the same time). Often, however, old
observations do not count as much as more recent ones. Thus we have to unlearn or forget some of them. This is the
same as saying that new observations (evidence) are more important than older evidence and hence should have more
weight in the adaptation process. We can make HUGIN respond to such situations by using fading tables.

Fading tables are meaningless without experience tables (i.e., in order to forget something we must have had remem-
bered it first). In order to implement fading, we have to introduce a fading factor, which is the rate at which previous
observations are forgotten. A fading factor of 0 means that there is no adaptation and a fading factor of 1 means there
is no fading.

The following is a description of how to use fading tables in the HUGIN Graphical User Interface and how they work.
Close the network we have been working with so far without saving it or adjust the experience counts to 10 and set
the conditional probabilities back to (0.5,0.5). The steps needed to add a fading table to a variable are similar to those
for adding an experience table to the variable. To add a fading table to a discrete chance variable select the variable,
do a right click, and select “Add Fading Table” in the “Experience/Fading Table Operations” submenu. Then select
“Show fading table” item of the View menu of the node table for the “Smoker?” node and enter the fading factor in
the fading table section of the node table. The fading factor should be a number between 0 and 1. If we enter 0 or a
number greater than 1, no matter how many times we try to adapt the network, nothing will change. If we choose 1, it
will work as if there was no fading taking place. Note that if a variable does not have an experience table, then it is not
possible to add a fading table to the variable. For this example, enter a fading factor of 0.5 to the “Smoker?” variable.
Now enter the evidence that Smoker? is in state 0 (“yes”). Click the adapt button once and switch to Edit Mode to see
the updated CPT and experience table of “Smoker?”. The results are shown in Figure 5.

© Copyright 2020, HUGIN EXPERT A/S 113

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 5: The CPT, experience table, and fading table for “Smoker?” after adaptation.

One thing that you might have noticed is that the experience count has decreased from 10 to 6. How come the
experience count decreased while we were adding some experience to the network? To explain this, let’s consider the
fading factor. After one adaptation run the experience counts and probabilities can be computed as

𝑁(𝑆𝑚𝑜𝑘𝑒𝑟? = ”𝑦𝑒𝑠”) = 𝑓𝑎𝑐𝑡𝑜𝑟 *𝑁(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑦𝑒𝑠) + 1 = 0.5 * 5 + 1 = 3.5

𝑁(𝑆𝑚𝑜𝑘𝑒𝑟? = ”𝑛𝑜”) = 𝑓𝑎𝑐𝑡𝑜𝑟 *𝑁(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑛𝑜) = 0.5 * 5 = 2.5

𝑁(𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒) = 3.5 + 2.5 = 6

𝑃 (𝑆𝑚𝑜𝑘𝑒𝑟? = ”𝑦𝑒𝑠”) = 3.5/6 = 0.583333

𝑃 (𝑆𝑚𝑜𝑘𝑒𝑟? = ”𝑛𝑜”) = 2.5/6 = 0.416667,

where we again use the somewhat informal N notation. N(previous_yes) and N(previous_no) are the previous experi-
ence counts in the “yes” and “no” states respectively and N(experience) is the total experience count for the concerned
variable. To add fading tables to all discrete chance variables in the network click the right mouse button somewhere
in the Network Pane, choose “Add Fading Table to All Discrete Chance Nodes” in the “Experience/Fading Table
Operations” submenu, and add the fading factor for each variable.

114 © Copyright 2020, HUGIN EXPERT A/S

CHAPTER

FOUR

MANUAL

This manual describes the HUGIN Graphical User Interface. All topics covered by this manual can be found in the
index below.

You can also go to the Main Window topic, the Edit Mode topic, or the Run Mode topic and use their clickable images
to find the information that you need:

• Main Window (page 174)

• Edit Mode (page 122)

• Run Mode (page 121)

4.1 Functions and Tools

4.1.1 Gaussian (Normal) Distribution Function

Continuous chance nodes (page 209) in a HUGIN network can be specified to have a Gaussian (or normal) distribution
function. This text does not cover a mathematically description of the Gaussian distribution function; it only describes
how it can be used in HUGIN network nodes.

The Gaussian distribution function is defined on the complete real axis. Any Gaussian distribution function can be
specified by its mean and variance parameter. In HUGIN, a continuous chance node can have a single Gaussian
distribution function for each configuration of its discrete parents states (both discrete chance nodes and decision
nodes). If a continuous chance node has one or more continuous chance node parents, the mean can be linearly
dependent on the states of these continuous parents.

In general, the distribution for a continuous variable Y with discrete parents I and continuous parents Z is a (one-
dimensional) Gaussian distribution conditional on the values of the parents:

𝑃 (𝑌 |𝐼 = 𝑖, 𝑍 = 𝑧) = 𝑁(𝛼(𝑖) + 𝛽(𝑖)𝜏𝑧, 𝛾(𝑖))

Figure 1 shows an example of the specification of a Gaussian distribution function of a continuous chance node (C4)
having one discrete chance node (C1) and two continuous chance nodes (C2 and C3) as parents.

© Copyright 2020, HUGIN EXPERT A/S 115

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: An example of a network where the continuous chance node C4 has one discrete chance node (C1) and two
continuous chance nodes (C2 and C3) as parents.

Figure 2: The specification of a Gaussian distribution function for C4 that has one discrete chance node (C1) and two
continuous chance nodes (C2 and C3) as parents.

This specification gives a conditional Gaussian distribution function for each of the states of C1 (where N(m,v) is the
Gaussian distribution function with mean m and variance v):

• P(C4 | C1=”State 1”, C2 = x, C3 = y) = N(1 + 3x + 4y, 2.1)

• P(C4 | C1=”State 2”, C2 = x, C3 = y) = N(2 + 3.5x + 4.6y, 2.2)

The mean of each distribution function for C4 is thus a sum of a specified mean parameter and a weighted sum over
the values of the continuous parents, where the weights are given by the numeric values in the C2 and the C3 rows of
the table in Figure 2.

Only the mean depends linearly on the continuous parent nodes. The variance is constant for each configuration of the
states of the discrete parents.

See Introduction to Bayesian Networks (page 19) for an example of the modeling of a real-world problem involving
several discrete and continuous variables.

116 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.2 Continuous-Discrete Node Value Transfer Function

The Continuous-Discrete node Value Transfer function (CDVT function) is available in Analysis Menu (page 270)
under the Network Menu (page 173). In essence the CDVT function implements a modelling technique to circumvent
the limitation of no discrete children of continuous nodes in CLG Bayesian networks. A discrete interval node is
linked to a continuous node such that the expression generating the distribution of the discrete node is equal to the
posterior marginal of the parent continuous node. In this way the discrete node becomes a discretize representation of
the continuous node. The discrete node has no table as the table is regenerated using the Table Generator functionality.
The states of the discrete node are determined by the user prior to compiling the network.

Figure 1: The dashed arrow specifies a CVDT function link.

Figure 1 shows a link between a continuous and discrete nodes pair created by the CDVT function.

© Copyright 2020, HUGIN EXPERT A/S 117

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The Discrete Score is a discrete approximation of the Continuous Score computed using Table Generator
functionality.

Figure 2 illustrates how the density function of a continuous node can be approximated by a discrete distribution using
the CDVT function.

The CDVT function has some major limitations such as evidence can only be propagated along the direction of the
CDVT link, only sum-normal equilibrium is supported and no type of analysis is supported on a network with CDVT
links.

The discretization link should be used with extreme care.

4.1.3 Level of Significance

The structure learning algorithms are based on making dependence tests that calculate a test statistic which is asymp-
totically chi-squared distributed assuming (conditional) independence. If the test statistic is large for a given indepen-
dence hypothesis, the hypothesis is rejected; otherwise, it is accepted. The probability of rejecting a true independence
hypothesis is given by the level of significance.

Figure 1: Text box in which the user specifies the level of significance to be used by the structure learning algorithms.

118 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

The level of significance can be entered into this text field. The default value is set to 0.05, which should be appropriate
for most learning sessions, but it can take on any value in the open interval (0;1). In general, the higher the significance
level the more links will be included in the learned structure. Reducing the level of significance will usually also reduce
the running time of the structure learning algorithms.

See also the PC algorithm (page 230) and the NPC algorithm (page 231).

4.1.4 Traverse Instance

The “Traverse Instance” function can be invoked by selecting an instance node in run mode, and selecting either
“Traverse Instance” from the Network Menu, or from the popup-menu (brought up by a right-click with the mouse).
This will open a new window containing a compiled version of the class from which the instance is derived (See figure
1).

Figure 1: A traversal frame for the Ann class in the Studfarm network.

The functionality of the traversal frame is very limited. Only operations concerning insertion and propagation of
evidence are included.

The primary purpose of the traversal frame is the ability to transfer evidence from the frame to any instances of the
class available. When the “Transfer Evidence” button is pressed, a list of all available instances are displayed, and any
evidence in the traversing frame will be copied to the selected instance. Note, that input nodes are a special case: if
another node is bound to the input node, the evidence (or lack of same) will override the evidence on the input node.
That is, the evidence on that node will not be copied from the traversal frame.

Traversing instances can be very useful when working with OOBNs. In the main network (i.e., the network with
the instance nodes which are to be traversed) there is no way of examining the structure of the instance nodes. The
only way of interacting with the nodes in the instance is by clicking on the nodes in the belief bar (page 227), and this
contains no structural information (except for encapsulating nodes in instances). By traversing the frame, this structure
is revealed while still being able to insert and retract evidence. Obviously, recursive traversal is possible as well, so
that any instances present in the traversal frame can themselves be traversed.

© Copyright 2020, HUGIN EXPERT A/S 119

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.5 Simulation

Based on the joint probability distribution induced by the model and propagated evidence, the HUGIN Graphical User
Interface generates an instantiation of all (uninstantiated) variables in the model.

4.1.6 Markov Blanket

The markov blanket for a node can be displayed by selecting the node and then click the Show Markov Blanket option
in the the d-separation (page 270) pane.

The Markov Blanket of a node A is the set consisting of the the parents of A, the children of A, and the nodes sharing
a child with A.

If all variables in the Markov blanket for A are instantiated, then A is d-separated from the rest of the network.

For example the markov blanket for the node I in Figure 1 is {C, E, H, K, L}, which can be seen in Figure 2.

Figure 1: Network.

120 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Markov blanket for node I.

4.1.7 Run Mode

To use HUGIN networks for computations, the HUGIN Graphical User Interface must be working in Run Mode.
Figure 1 shows a Network Window (page 171) in Run Mode. In Run Mode, the network window is split into a Node
List Pane (page 227) (unless this has been disabled via the Toggle Belief Bar item of the View Menu (page 176)) on
the left and a Network Pane (page 167) on the right, showing the network. In the Node List Pane one can see the states
of the nodes and their beliefs (also, expected utilities in LIMIDs), probabilities and expected utilities for decision
nodes (page 209) and mean & variance for continuous chance nodes (page 209)). The states of a node appears when
expanding (page 215) it.

© Copyright 2020, HUGIN EXPERT A/S 121

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The network window of a HUGIN network running in Run Mode.

To switch from Edit Mode (page 122) to Run Mode, click the compile (page 124) button in the Edit Mode Tool Bar or
select the Compile item of the Network Menu (page 173). Figure 2 shows the compile button.

Figure 2: The compile tool button from the network window Tool Bar.

4.1.8 Edit Mode

When you are constructing your HUGIN network, you are running in Edit Mode. In Figure 1 you can see a network
window (page 171) of a HUGIN network running in Edit Mode. In Edit Mode, the network window is split up in a
Tables Pane (page 224) containing the table of the currently selected node. Below the Tables Pane is the Network Pane
(page 167) where the graph describing the network is found.

122 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The network window (page 171) of a HUGIN network running in Edit Mode.

To switch from Run Mode (page 121) to Edit Mode, press the Edit Mode tool button (see Figure 2).

Figure 2: The Edit Mode tool button from the Run Mode Tool Bar.

4.1.9 Compress

To optimize a HUGIN network you can also use the compression facility activated by the Compress check box found
in the Compilation (page 124) tab of the Network Properties (page 167) dialog box.

Compression will optimize the way the tables of the internal representation are stored. Basically, you can save space
any time a table entry has a zero value (probability). This means that the more zero-probabilities you find in the tables
of your HUGIN network, the more effect will you get from using the compression option.

You can compress even more using approximation (page 124) (if you are willing to work with less precision).

© Copyright 2020, HUGIN EXPERT A/S 123

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.10 Approximate

If you need to (want to) make your HUGIN network even faster than what you can achieve by ordinary compression
(page 123), you can use the approximation option.

Approximation is activated in the Compilation (page 124) tab of the Network Properties (page 167) dialog box. This
function works by eliminating the smallest table values of the internal network representation (making them zero),
so that the compression function will be more efficient (compression can save space when there are a lot of zero
probabilities).

To specify which table values to eliminate, you must set an epsilon value which specifies how much probability mass
to eliminate. Then, small table values are set to zero - from the smallest end, until you have removed an amount of
epsilon probability mass.

You should be careful when using approximation. It can cause conflicts when rare cases occur, since small (though
existing) probability mass has been eliminated.

4.1.11 Compile

The compile function is activated from Edit Mode (page 122) either by pressing the compile tool button (see Figure 1)
or by selecting the Run item of the Network Menu (page 173).

Figure 1: The compile tool button from the Network Window (page 171) Tool Bar.

You can also activate the compile function from Run Mode (page 121). Here, the Run Mode item of the Network
Menu is replaced with the Recompile item.

When activating the compile function from Edit Mode, the current network is compiled and Run Mode is entered.

When activating the compile function from Run Mode, the current network is recompiled (page 126) (this can some-
times be useful). If the color of the compile button changes, then this indicates that a recompilation of the network
may be require in order to capture any changes made to the class of the network or to classes of instance nodes in the
network. Notice that a compilation of a (limited-memory) influence diagram (page 327) does not compute updated
policies. To update policies it is necessary to perform a Single Policy Update (page 241) after compiling the network.

The compilation of a HUGIN network involves a transformation of the network to a junction tree (page 237) in which
the propagations (page 230) can take place.

You can specify certain properties on the compilation in HUGIN from the Network Properties (page 167) item of the
Network Menu. Figure 2 shows the Compilation tab of the Network Properties dialog box.

124 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The Network Properties dialog box showing the Compilation tab.

Generally, it is NP hard (mathematical way to say that it is impossible within reasonable time) to find the best internal
representation of a HUGIN network (the junction tree representation). This is basically because it is NP hard to
triangulate a graph optimally.

In many cases, however, an optimal (or near-optimal) triangulation can in fact be found. From version 5.4 and onwards,
The HUGIN Decision Engine offers a method for optimal triangulation, which in many cases results in junction trees of
much lower complexity than those generated using the other (heuristic) triangulation methods provided. The optimal
triangulation method works by searching for minimal separators. For some networks this results in extremely many
possible optimal separators.

Note on Optimal triangulation options:

© Copyright 2020, HUGIN EXPERT A/S 125

HUGIN Graphical User Interface Documentation, Release 8.9

Note:

• Max separators - To control the running time of the search for an optimal triangulation, the maximum number
of minimal separators to generate can be specified. If this value is set to zero, an unlimited number of separators
are allowed to be generated.

• - at each triangulation step a separator that minimize this formula is
selected. By specifying values for a, b and c we can tweak the selection criteria - this may be beneficial when
searching for triangulations for large networks.

• a - specify how to favor weight of the current separator.

• b - specify how to favor added weight of extra fill-ins imposed by current separator.

• c - influence tolerance for the selection of large separators, delta is the difference in size between the entire
graph and the largest sub-graph induced by split using this separator.

• Load initial triangulation - instead of using greedy selection of minimal separators to find the initial triangula-
tion, check this field to load an initial triangulation from file (i.e. load a node elimination order from file). If a
good triangulation is already known, then this can be used to speed up the optimal triangulation process
significantly!

The other triangulation methods listed in the Compilation tab are different heuristic methods, which in many cases
perform quite well, but, as mentioned above, can result in junction trees that are far from optimal, complexity-wise.
Which of the heuristics are the better one depends on the network at hand - so if your network is complex and seems
to have poor performance with the current heuristic triangulation method, you might try one of the other heuristics or
try the optimal triangulation method.

Finally, a triangulation can be loaded from file (i.e. load a node elimination order from file).

The save-to-memory operation stores a copy of the initial clique potentials in memory. This implies a faster ini-
tialization process which may improve efficiency of performing multiple propagations (e.g., as part of the Analysis
Wizard).

You can sometimes save some space by using the optimization facilities. These are activated in the bottom half of the
Compilation tab. You can choose between ordinary compression (page 123) and compression involving approximation
(page 124). The latter will cause less precision while the first will not.

If you select Approximate, you must also specify an epsilon value stating how much loss of precision you will allow.
The larger the epsilon value, the less the precision (read more about this in the Approximate section (page 124)).

4.1.12 Recompile

The recompile function is activated from Run Mode (page 121) either by pressing the compile tool button (see Figure
1) or by selecting the Recompile item of the Network Menu (page 173).

Figure 1: The compile tool button from the Run Mode (page 121) Tool Bar.

You can use the recompile function to make a new compilation when a network has been saved with evidence and
reloaded to get the initial beliefs (if a network was saved with evidence, the shown beliefs will be those computed with
this evidence.

See also Compile (page 124).

126 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.13 Auto Propagation

Auto propagation can be enabled or disabled in the Auto Propagate tab of the Network Properties (page 167) dialog
box (see Figure 1).

Auto propagation makes HUGIN propagate automatically with a specific propagation method (page 230) every time
you enter new evidence.

Figure 1: The Network Properties dialog box showing the Auto Propagate tab.

In the Auto Propagate tab you can select one of two radio buttons to specify if you want to use auto propagation or
not. If you choose auto propagation, you can also specify which propagation method you want to use. In most cases
you would want to stick with Sum Normal (page 235).

© Copyright 2020, HUGIN EXPERT A/S 127

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.14 Auto Update Graphs

HUGIN can be specified to auto update graphs for continuous chance nodes (page 209). This is done in the Auto
Propagate (page 127) tab of the Network Properties (page 167) dialog box (see Figure 1). Simply check the check
box in the Monitor Updating group box.

Figure 1: The Network Properties dialog box showing the Auto Propagate tab.

If auto update graph is enabled, the graphs in the monitor windows (page 183) of continuous chance nodes will
automatically be updated when new evidence is entered. This can be very helpful on small networks but is not
recommended larger networks because it can be rather time consuming.

128 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.15 Temporal Clone

When modeling a system that evolves over time (as a DBN (page 332)), random variables at a given time instant
typically depend on the state of the system at past time instants.

In order to specify time dependencies, temporal clones can be constructed for the regular nodes.

A temporal clone of a variable X represents X at the previous time instant. Links can then be added from temporal
clones to the regular nodes. Thus, the temporal clones represent the “interface” between two successive time slices.

Figure 1: Temporal clone T_master and regular node master. T_master represents master from previous time slice.

Create temporal clone

To create a temporal clone, select (page 151) the master node that should be cloned, then right-click the master node
and click Create temporal clone, finally click the network panel (page 167) at the position where the temporal clone
should be inserted.

The Temporal Clone

The following list higligts the main charactaristica of temporal clones.

• Both discrete and continuous chance nodes can have temporal clones. In the case of a DBN with mixed nodes,
there are restrictions on the compilation of the model.

• The links of the network must respect the natural flow of time. This means that temporal clones can only have
other temporal clones as parents (not regular nodes).

• Discrete temporal clones can have tables and models. These tables are used to define the distribution over the
temporal clones for the first time slice. For subsequent time slices, the temporal clones are replaced by the actual
nodes in the previous time slice. Because links are allowed between temporal clones, any distribution can be
specified.

• For discrete temporal clones, the category and attributes related to states cannot be changed directly. Changes
must be performed through their temporal masters: Identical changes are then automatically performed for the
clones.

• A temporal clone can be deleted. But if the temporal master of the clone is deleted, then the clone is also deleted.

4.1.16 Instance Node Replace Class

The class on an instance node of a Bayesian network or a LIMID model can be replaced by another (compatible) class
using the “Instance Tool->Replace Class” under the right mouse button menu, or by selecting a new class in the Node
Properties Pane (page 197) of the instance node.

© Copyright 2020, HUGIN EXPERT A/S 129

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.17 Text labels

A text label is a dragable text component that can be used to add custom description to the current network. A text
label can be added to the current network by activating the Text Label Tool item of the Edit Menu or Edit Mode Tool
Bar, and clicking somewhere in the Network Pane (page 167).

Figure 1: A transparent unselected text label component and two nodes.

A text label is made editable by double clicking on the given label, which also visually changes the background color
of the text label to white and enables a cursor within the label (see Figure 2 below). In editable state, standard shortcuts
on text such as: Ctrl + a (select all) and Ctrl + x (cut selected) works on the text.

Figure 2: A selected editable text label

The text label is deselected by clicking anywhere outside the label. Also a text label cannot be moved while editable.

130 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.18 Select State

The select state function is activated by double clicking a state of a node in the Node List Pane (page 227) or in a
Monitor Window (page 183).

The select state function is a special case (the most common case) of entering likelihood evidence (page 140). What
you actually do is entering the fact that one state now has probability 1 and all other states have probability 0.

4.1.19 Select All

The select all function is activated by selecting the Select All item of the Edit Menu (page 122).

The select all function selects all nodes in the Network Pane (page 167). This allows you to perform certain operations
on all nodes in one go instead of performing them on one node at a time.

4.1.20 Belief Precision

The belief precision function is activated by selecting Belief Precision from the View Menu (page 176). The Belief
Precision item has a series of sub items which are shown in Figure 1.

© Copyright 2020, HUGIN EXPERT A/S 131

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The sub items of Belief Precision in the View Menu.

The first sub item is Max Precision which when selected displays all beliefs as numbers between 0 and 1 with up to
six significant digits (single precision values). In influence diagrams, expected utilities are displayed also with up to
six significant digits.

The five “Percent” sub items enables display of beliefs as numbers between 0 and 100 (percent). Each of these sub
items specifies a specific number of digits following the decimal point.

The last sub item is “No Belief Values”. This disables the display of belief values. In stead, only the graphical display
of beliefs is used.

132 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.21 Constraints

We consider three different types of query constraints; a single event constraint 𝑃 (𝑦1|𝜀), a two events difference
constraint 𝑃 (𝑦1|𝜀)) - 𝑃 (𝑦2|𝜀) and a two events ratio constraint 𝑃 (𝑦1|𝜀) / 𝑃 (𝑦2|𝜀). For each type of constraint, we
may consider =, <= and >= relations compared to a value x ∈ R. We assume the constants of the sensitivity functions
involved have been identified such that: 𝑓(𝑡) = 𝛼 * 𝑡+ 𝛽/𝛾 * 𝑡+ 𝛿 and the evidence set 𝜀 to be constant.

To identify the required adjustment for the parameter t to satisfy a constraint, we solve three equations with respect to
equality:

• Single event constraint : 𝑥 = 𝑃 (𝑦1|𝜀).

• Two events difference constraint : 𝑥 = 𝑃 (𝑦1|𝜀)−𝑃 (𝑦2|𝜀) = (𝛼1 * 𝑡+ 𝛽1/𝛾 * 𝑡+ 𝛿)− (𝛼2 * 𝑡+ 𝛽2/𝛾 * 𝑡+ 𝛿).

• Two events ratio constraint : 𝑥 = 𝑃 (𝑦1|𝜀)/𝑃 (𝑦2|𝜀) = (𝛼1 * 𝑡+ 𝛽1/𝛾 * 𝑡+ 𝛿)/(𝛼2 * 𝑡+ 𝛽2/𝛾 * 𝑡+ 𝛿).

• Constraints Panel (page 133)

• Input Panel (page 135)

• Results table (page 136)

Constraints Panel

Part of the Parameter Sensitivity Wizard is the Query Constraints Panel. The purpose of this panel is to offer the user
the ability to specify constraints on the posterior probability in the hypothesis and find the smallest change necessary
to satisfy it. In Figure 1 the “asia_.net” network is loaded and a constraint is specified for the posterior probability of
“Has tuberculosis”. The current belief for Has tuberculosis = yes is 0.1 and we would like it to be 0.11. After pressing
the “Compute” button the tool returns a list of changes that could be made to satisfy the constraint. When selecting
one of these suggestions, the buttons “Edit” and “Adopt” become enabled allowing the user to apply the changes.

© Copyright 2020, HUGIN EXPERT A/S 133

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Constraints Panel

The constraints panel consists of the following elements:

• The input panel (page 135) is where the user can select the hypothesis nodes and their states and specify con-
straints to their posterior probabilities.

• The results table (page 136) is a list of suggested changes to values in CPT tables, that the tool has computed

134 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

and can satisfy the constraints.

• The cases panel (page 317) is where the user can load a case file corresponding to the current domain, and select
and insert a case in the domain.

Input Panel

There are three ways to specify constraints in the input panel; one event constraint, two event Ratio constraints and
two event difference constraints. To specify a one event constraint, select a hypothesis node from the “Variable 1”
combo box and then one of its states from the state combo box. The belief for the selected state is shown to the right.

Figure 2: The input panel where one event constraint is specified.

To specify two event constraints the “Two Events” check box should be selected. The optional panel becomes enabled
and allows the selection of the type of the two event constraint (ratio or difference) and the selection of the second
Hypothesis node (Variable 2). The next step is to input the constraints in the constraint fields (Constraint 1, Con-
straint2). It is possible to specify one or two constraints (“<= con1 and >= con2”). When specifying one constraint
the Constraint 2 field is automatically set to Infinity (Figure 3) or -Infinity (Figure 4) according to comparison symbol
selected in the Constraint 1 combo box.

Figure 3: One constraint, greater equal

Figure 4: One Constraint, less equal

The computation of the suggested changes that could be made to satisfy the specified constraints, is triggered by
pressing the “Compute” button or pressing Enter, while editing in one of the two constraint fields.

© Copyright 2020, HUGIN EXPERT A/S 135

HUGIN Graphical User Interface Documentation, Release 8.9

Results Table

The results table (Figure 5) displays suggested changes that can be made to certain cpt tables to satisfy the constraints.
Each row describes one suggestion with the following columns:

• The Parameter column describes the posterior probability that needs to be changed.

• The current value is the value of the cpt index.

• The suggested value column shows a range of values that can replace the current value in order for the constraints
to be satisfied. The value displayed in bold, indicates the smallest absolute change within the suggested values
range.

• The absolute change is a range of values that represent the absolute difference between the suggested value and
the current value. (Current - suggested). The value displayed in bold represents the absolute change for the
suggested value displayed in bold.

• If q is the new value and p is the current value, the Log Odds Change is defined as follows: 𝑙𝑜𝑔(𝑞/(1 − 𝑞)) −
𝑙𝑜𝑔(𝑝/(1− 𝑝)). The value displayed in bold, indicates the smallest log odds change within the suggested values
range.

Figure 5: A table showing the suggested changes that could satisfy the constraints

Every column can be sorted by clicking on its header once (ascending order) or twice (descending order). Every cell
in a column other than the Parameter column, is colored with a variation of the blue color that represents the actual
value. In case of a range of values, the color represents the one displayed in bold. The color variation and the sorting
function make it easier to select the suggested change with the smallest absolute or log odds change. When selecting
a row, the “Edit” and “Adopt” buttons are enabled (Figure 6).

Figure 6: “Edit” and “Adopt” buttons

When pressing “Edit” a dialog with the selected cpt table is displayed allowing the user to manually apply the change
selected in the results table. If the first row in the results table is selected the dialog in Figure 7 is displayed and the
user can change the value 0.3 (smoker = no) to a value between 0.39907 and 0.708908.

136 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 7: CPT for “Has bronchitis”

When pressing “Adopt”, the selected change is automatically applied and the value displayed in bold is used as it
represents the smallest change. After applying constraints in the domain the effects of the changes made can be seen
in the “Parameter Sensitivity Panel” (page 317).

4.1.22 Prediction

In a DBN (page 332) we can compute beliefs for nodes in time slices that lie beyond the time window. This operation
is called prediction.

Note: only DBNs entirely consisting of discrete nodes supports prediction.

To perform prediction, click the prediction button and summon the prediction wizard.

© Copyright 2020, HUGIN EXPERT A/S 137

HUGIN Graphical User Interface Documentation, Release 8.9

Prediction Wizard

The belief prediction wizard has two tabs for configuring the computations. First configure the number of time slices
beyond the current time window to predict.

Figure 1: Prediction, configure number of time slices beyond window to predict.

Next pick the nodes we wish to predict.

138 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Prediction, pick which nodes to predict.

Finally when done configuring click the OK button to compute predictions. When computation is done a data frame
(page 373) appears with the predicted beliefs.

© Copyright 2020, HUGIN EXPERT A/S 139

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: A data frame displaying the predicted beliefs. Each row represents a time slice. The first 0 to (n - number
of slices to predict) rows are the time slices from the current window and the remaining rows are the predicted time
slices.

4.1.23 Enter Likelihood

The enter likelihood function is available in Run Mode (page 121). You can activate the enter likelihood function
either by selecting the Enter Likelihood item of the Network Menu or by pressing the enter likelihood tool button (see
Figure 1).

Figure 1: The enter likelihood tool button from the Run Mode Tool Bar.

Entrance of likelihood can only be used on discrete chance nodes (page 208).

Entrance of likelihood is what you do when you learn something about the state of the world which can be entered
into a node of your network. The simplest form is for example when you have a node “Ball Color” stating the color of
a ball drawn from a basket of red and blue balls. This node has states “red” and “blue”. Then, when you see the color
of the ball is actually blue, you can enter this fact by saying that “Ball Color” takes state “blue”. The easiest way to
enter this is by using the select state (page 131) function. However, you can also do it by entering likelihood. That is,
you want to enter the fact that the probability of “Ball Color” being in state “blue” is 1 while the probability of “Ball
Color” being in state “red” is 0.

When you have activated the enter likelihood function, the dialog window shown in Figure 2 appears. Here, you can
enter additional information that you might have come over.

140 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The likelihood dialog window.

In the case of Figure 2, we have a node called “# Red Balls” counting the number of red balls in a basket containing
3 balls of which some are blue and some are red. If you have taken two balls up from the basket and both of these
were blue, you know that at most 1 ball in the basket is red. This information can be given to the network by entering
likelihood into the “# Red Balls” node as we have done in Figure 2. We give “0 balls” and “1 ball” equal positive
probability while “2 balls” and “3 balls” get probability 0.

In the likelihood dialog window, you have a Node area and a Likelihood area. In the Node area, the label (page 196)
of the node is found. In the Likelihood area, there is a display showing what you have entered so far. Here, you can
drag the bars representing a probability back and forward with the mouse. Below this display is a select field where
you can choose between different standard probability values (0, 0.1, 0.33333, 0.5, etc.). Choosing one of these values
will make the currently selected state in the display take this value as probability.

Below the display in the Likelihood area are also two buttons labeled “All 1” and “All 0”. Pressing one of these makes
all states in the display take values 1 or 0 respectively.

You should not be concerned with the fact that the sum of all probabilities are not necessarily 1. HUGIN will normalize
the values so that for example in the case shown in Figure 2, “0 Balls” and “1 Ball” each get probability 0.5.

© Copyright 2020, HUGIN EXPERT A/S 141

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.24 Align

The align function is activated by selecting the Align item from the Options Menu (page 182). The Align item has five
sub items which are shown in Figure 1.

Figure 1: The sub items of Align in the Options Menu.

The four “Align” sub items are used for aligning a series of nodes to the same horizontal or vertical line. The line is
specified by “Left”, “Right”, “Top”, or “Bottom”. The “Align” sub items can only be activated if two or more nodes are
selected. When an “Align” sub item is activated, all the selected nodes are placed on the specified line. If, for example,
the “Align Right” sub item is activated, the specified line is the vertical line through the right most node in the series
of selected nodes (“Align Left” specifies a vertical line through the left most selected node, while “Align Top” and
“Align Bottom” specifies horizontal lines through the top most and bottom most selected nodes, respectively).

If the specified line is a vertical line the selected nodes keep their horizontal coordinate and if it is a horizontal line
they keep their vertical coordinate.

The “Snap to Grid” sub item of the “Align” item moves each node to the grid point closest to its current position. A
shortcut to this function is available through Shift + , (comma).

4.1.25 Tile Windows Horizontally

The tile windows horizontally function can be activated from the Tile Horizontal item in the Window Menu (page 178)
or from the tile windows horizontally button in the Main Window (page 174) Tool Bar (the button shown in Figure 1).

Figure 1: The tile windows horizontally tool button from the Main Window Tool Bar.

The tile windows horizontally function arranges the network windows in the Main Window below each other.

142 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.26 Tile Windows Vertically

The tile windows vertically function can be activated from the Tile Vertical item in the Window Menu (page 178) or
from the tile windows vertically button in the Main Window (page 174) Tool Bar (the button shown in Figure 1).

Figure 1: The tile windows vertically tool button from the Main Window Tool Bar.

The tile windows vertically function arranges the network windows in the Main Window side by side.

4.1.27 Cascade Windows

The cascade windows function can be activated from the Cascade item in the Window Menu (page 178) or from the
cascade windows button in the Main Window (page 174) Tool Bar (the button shown in Figure 1).

Figure 1: The cascade windows tool button from the Main Window Tool Bar.

The cascade windows function arranges the network windows in the Main Window in a cascade (window upon window
upon window. . .).

4.1.28 Color Chart

The purpose of the color chart is to graphically display the contents of an entire table at once. This will easily reviel to
the user where large values are concentrated. Color charts are used various places in HUGIN for displaying different
kinds of information:

• In conjunction with the table pane (page 224) for displaying the CPT. (See figure 1.)

• In the Paramater Sensitivity Analysis wizard (page 317).

• In the Correlation analysis tool (page 311).

Figure 1 shows the Tables Pane for a discrete chance node in conjunction with a color chart.

© Copyright 2020, HUGIN EXPERT A/S 143

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Color chart from the Tables Pane.

4.1.29 Component Tree

The component tree tool gives an overview of any classes instantiated in an OOBN (page 328) from a selected network
class. Each class is represented by a rectangle in the tree. The component tree tool can be activated from the View
menu (page 176).

Figure 1 shows a screenshot of the component tree window for a random network. Functionality for printing the tree
and zooming is provided by the toolbar in the top of the window. Clicking on a class in the component tree will bring
the propper network pane (page 167) in focus.

Figure 1: Component tree tool.

144 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.30 Resize Node

It is possible to assign a size to each individual node. This can either be done by setting the size in the Node Properties
(page 197), or by dragging the “size handles” on the node (displayed in Figure 1). The “size handles” appear when
only a single node is selected.

Figure 1: The size handles are placed at the four “corners” of the node

When dragging one of the handles, the node will resize in all four directions. That is, the center of the node remains
fixed. Note, that the size of the node cannot be below 10 or above 300 in any direction.

4.1.31 Layout Network Nodes

The layout network nodes tool will try to organize the nodes of the network using the algorithm preferred by the user.
Layout network nodes can be accessed by selecting the corresponding item of the Network Menu (page 173).

The internal algorithm of the HUGIN Graphical User Interface assumes the network as a certain type of structure.
This implies that if a network does not have the assumed structure, then the algorithm may produce an organization of
the nodes, which seems suboptimal.

If the user has install Dot (Graphviz - open source graph visualization software) on her computer, then she may
configure the HUGIN Graphical User Interface to use Dot instead of the internal algorithm. The automatic layout
algorithm is configured in Network Preferences (page 189).

4.1.32 Lock Display of Evidence

The lock display of evidence function can be activated either from the Lock Evidence item of the View Menu (page 176)
or from the lock evidence button in the Run Mode (page 121) Tool Bar (the button shown in Figure 1).

Figure 1: The lock evidence button from the Run Mode Tool Bar.

The lock display of evidence function is meant to allow display of the likelihood entered. Normally (when the lock
display of evidence is disabled), the monitors (page 183) and the Node List Pane (page 227) will for all nodes show
the belief of a node being in each of its states. When the lock display of evidence function is activated, the monitors
and Node List Pane will show the entered likelihood for all nodes with likelihood evidence entered (page 140).

© Copyright 2020, HUGIN EXPERT A/S 145

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.33 Retract Evidence

The retract evidence function can be activated either by selecting the Retract Evidence item of the Network Menu
(page 173) or by double clicking in the Node List Pane (page 227) at the currently selected state of the node for which
you want evidence retracted.

You can retract evidence from a node when you want to eliminate the effect of the evidence entered into this node.

4.1.34 Show Class

The Show Class function can be activated by selecting the Show Class item of the View Menu (page 176). This function
selects the Network Window (page 171) containing the network (class) of which the selected instance node (page 209)
represents an instance (the function is available only when an instance node is the only node selected).

As a shortcut, the class of an instance node can be selected by clicking the left mouse button inside the instance node
while pressing the Alt key.

4.1.35 Link

A link in a Bayesian network (page 327) defines a causal link (page 147) from one chance node (discrete (page 208)
or continuous (page 209)) to another.

In an LIMID (page 327), a link can mean one of three things:

1. It can be a causal link as in a pure Bayesian network. This is the case, when the link goes from a chance node
or decision node (page 209) to a chance node.

2. It can define the utility function to depend on a chance node or a decision node. This is the case if the link goes
from a chance node or decision node to a utility node (page 211).

3. It can specify the information available to the decision maker. This is the case if the link goes from a chance
node or decision node to a decision node. These links are referred to as informational links.

In an object-oriented Bayesian network (or LIMID), a link is defined as above, except if the link points to an input
node (page 211) of an instance node (page 209). In that case the link is interpreted as a binding link (page 148) (i.e.,
the input node is bound to the node at the other end of the link).

A link can be established in Edit Mode (page 122) by activating the Link Tool (page 154) and dragging a line from one
node (page 196) to another.

There are three different display modes for a link:

1. Normal: A straight line from one node to another.

2. Spline: A bezier line (i.e., a curve that passes over every 3 points of a series).

3. Lines: A series of straight lines.

The display mode for a link is selected by first selecting the link (i.e., left-click at or near the link so it gets highlighted),
then right-clicking at the background of the Network Pane (page 167) to activate the pop-up menu for the pane, then
selecting the Link Mode item, and finally selecting the desired mode from the Link Mode sub-menu (see Figure 1).

146 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: There are three different display modes for a link.

New bezier points a created simply by click-and-drag operations. Figure 2 shows a link with two bezier points, dis-
played in Spline mode and Lines mode, respectively. The bezier points can be moved using click-and-drag operations.
Please note that if a bezier point is moved to a location lying on the line between its neighboring points, it will be
removed.

Figure 2: There are three different display modes for a link.

4.1.36 Causal Link

A causal link is a link (page 146) from a chance node (discrete (page 208) or continuous (page 209)) or a decision
node to a chance node.

It defines a causal dependence from the parent node to the child node. That is, the state of the parent has an impact on
the state of the child.

It can sometimes be difficult to determine what is a causal dependence and what is not. For ecample, imagine you have
two nodes: One for “Red Spots” and one for “Measles”. Some might say that when you observe red spots on a child
it is very likely that the child has measles, so you should add a link from “Red Spots” to “Measles”. This, however,
is terribly WRONG! The relation between red spots and measles is that measles causes red spots. The link should go
from “Measles” to “Red Spots” (because it is a causal link).

© Copyright 2020, HUGIN EXPERT A/S 147

HUGIN Graphical User Interface Documentation, Release 8.9

Always make sure that the causal links you add are causal.

4.1.37 Binding Link

A binding link indicates that the node at which the link starts is bound to the input node to which the link points. For
further details, see the description of input nodes (page 211).

4.1.38 Link (or Arc) Reversal

A link in a Bayesian network or a LIMID can be reversed using the Reverse Link Tool (page 154).

Please note that, to respect the conditional independence and dependence statements encoded in the network, link
reversal may cause new links to be added. For example, assume we wish to reverse the link B → A in B → A ←
C, which states that B and C are dependent given A. Then, to preserve this dependence statement, a link must be
introduced between B and C. More precisely, the rule for link (or arc) reversal is the following:

1. Let X → Y be a link in a Bayesian network, where X has parents {XP1,. . . ,XPn} and Y has parents
{X,YP2,. . . ,YPm}.

2. Reversing the link X → Y, makes {XP1,. . . ,XPn} ∪ {Y,YP2,. . . ,YPm} be the new parents of X and
{YP2,. . . ,YPm} ∪ {XP1,. . . ,XPn} the new parents of Y.

This rule can easily be derived from Bayes’ rule.

As an example, consider the network in Figure 1. When reversing the link between X and Y in this network, X get
additional parents {C,D} (i.e., those parents of Y that are not already parents of X) and Y get additional parents {A}
(i.e., those parents of X that are not already parents of Y). The resulting network is shown in Figure 2.

Figure 1: A sample network, with link X→ Y selected.

148 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The resulting network after reversal of link X→ Y.

Please note that only links between discrete chance nodes can be reversed.

4.1.39 Toggle Node List

The Toggle Node List function can be activated by selecting the “Toggle Node List” item of the View Menu (page 176).
It toggles the display of the Node List (page 227) when the network is in Run Mode (page 121).

The preferred state of the Node List (hidden or shown) can also be set in the Preferences (page 189).

4.1.40 Expressions

Expressions is the key building block of Models (page 227) and can be used to simplify the specification of conditional
probability tables for discrete chance nodes, utility tables for utility nodes, and initial policies for decision nodes. This
is particularly useful when the conditional probability distribution for a variable follows (at least approximately) certain
functional or distributional forms. In such cases it is cumbersome to specify the conditional probability table manually.

An expression is built using standard statistical distributions (e.g., Normal, Binomial, Beta, Gamma, etc.), arithmetic
operators, standard mathematical functions (e.g., logarithmic, exponential, trigonometric, and hyperbolic functions),
logical operators (e.g., and, or, if-then-else), and relations (e.g., less-than, equals).

Expressions can be constructed manually or by the assistance of the Expression Builder (page 256), which guides
the user through the construction, using series of dialog boxes. See the Table Generator Tutorial (page 72) for more
information about expressions.

4.1.41 Show / Hide Node Locator

The Show / Hide Node Locator function is available in the View Menu (page 176). It toggles the appearance of the
Node Locator (page 199) in the Network Window (page 173) toolbar.

© Copyright 2020, HUGIN EXPERT A/S 149

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.42 Information

The information function is activated by selecting the Information item of the View Menu (page 176). When the
information function is activated, a pane displaying the Network log and Usage log appears at the bottom of the
screen. The tab Network log shows output comments generated during compilation. The tab Usage log shows all
actions performed since the network was loaded. Figure 1 shows this pane.

Figure 1: The Network Log tab of the Information pane.

4.1.43 Initialize

The initialize function is activated either by selecting the Initialize item of the Network Menu (page 173) or by pressing
the Initialize Tool button in the Run Mode (page 121) Tool Bar (see Figure 1).

Figure 1: The Initialize Tool button in the Run Mode Tool Bar.

The initialize function retracts all evidence entered into the current network.

4.1.44 Update global node and link groups

The Update global node and link groups function is activated by selecting the Update global node and link groups item
of the Network Menu (page 173), when a network is in Edit Mode (page 122).

The Update global node and link groups function works by updating the user created node- and link groups globally
for all classes in the network, such that each class will consistently contain the same groups. This has the side-effect
that when the network is later saved in the .net format, the node- and link groups of the top class will be consistent
with the groups of all other classes.

4.1.45 Update Monitor Graphs

One can update monitor graphs by selecting the Update all Monitor Graphs item of the View Menu (page 176), by
clicking the Update Monitor Graph Button in the Run Mode (page 121) Tool Bar, or by clicking the update button
in the lower right corner of each Monitor Window (page 183) showing a graph (continuous chance nodes (page 209)
only). An update graph button is shown in figure 1.

Figure 1: An update monitor graph button.

150 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

One may wish to update the monitor graphs when evidence has been propagated in a network containing continuous
chance nodes. One can specify HUGIN to automatically update the graphs (page 128), but in general (at least for
large networks) this feature should be disabled because it can be very time consuming.

4.1.46 Function Tool

The Function Tool can be activated either from the Function Tool item of the Edit Menu (page 181) or from the function
tool button in the Edit Mode (page 122) Tool Bar (the button shown in Figure 1).

Figure 1: The Function Tool button from the Edit Mode Tool Bar.

When the Function Tool is activated (when the function tool button is pressed) you can place a function node (page 210)
in the Network Pane (page 167): Simply click the mouse somewhere within the Network Pane. When you have placed
the function node the select tool (page 151) is normally activated again. If you want keep the Function Tool activated
(to create a series of nodes) hold down the SHIFT key while placing a node.

4.1.47 Instance Tool

The Instance Tool can be activated either from the Instance Tool item of the Edit Menu (page 181) or from the Instance
Tool Button in the Edit Mode (page 122) Tool Bar (the button shown in Figure 1).

Figure 1: The Instance Tool Button from the Edit Mode (page 122) Tool Bar.

When the Instance Tool is activated (i.e., when the Instance Tool Button is pressed), a menu appears with the list of
networks that can be instantiated in the currently selected network. (Note that only networks loaded into the HUGIN
Graphical User Interface tool can appear in the list.) However, if there is only one network that can be instantiated,
no menu will appear. If you select one of the networks in the menu, you can now place an Instance node (page 209)
in the Network Pane (page 167): Simply click the left mouse button somewhere within the Network Pane. When you
have placed the instance node, the select tool (page 151) is normally activated again. However, if you want to keep the
Instance Tool activated (to create a series of nodes) hold down the SHIFT key while placing a node.

4.1.48 Select Tool

The select tool is activated either by selecting the Select Tool item of the Edit Menu (page 181) or by clicking the
select tool button in the Tool Bar of the Edit Mode (page 122) Network Window (page 171). In Run Mode (page 121),
the select tool is always active. Figure 1 shows the select tool button.

Figure 1: The select tool button from the Edit Mode Tool Bar.

The select tool allows you to select one or more nodes in the Network Pane (page 167). You select a single node by
clicking it or dragging a rectangle around it when the select tool is active. You can select a series of nodes by dragging

© Copyright 2020, HUGIN EXPERT A/S 151

HUGIN Graphical User Interface Documentation, Release 8.9

a rectangle around the nodes you want selected. You can also add more nodes to the currently selected series of nodes
by holding down the SHIFT key while selecting more nodes.

4.1.49 Continuous Chance Tool

The Continuous Chance Tool can be activated either from the Continuous Chance Tool item of the Edit Menu
(page 181) or from the continuous chance tool button in the Edit Mode (page 122) Tool Bar (the button shown in
Figure 1).

Figure 1: The Continuous Chance Tool button from the Edit Mode (page 122) Tool Bar.

When the Continuous Chance Tool is activated (when the continuous chance tool button is pressed) you can place a
continuous chance node (page 209) in the Network Pane (page 167): Simply click the mouse somewhere within the
Network Pane. When you have placed the continuous chance node the select tool (page 151) is normally activated
again. If you want to keep the Continuous Chance Tool activated (to create a series of nodes) hold down the SHIFT
key while placing a node.

4.1.50 Discrete Chance Tool

The Discrete Chance Tool can be activated either from the Discrete Chance Tool item of the Edit Menu (page 181) or
from the discrete chance tool button in the Edit Mode (page 122) Tool Bar (the button shown in Figure 1).

Figure 1: The Discrete Chance Tool button from the Edit Mode Tool Bar.

When the Discrete Chance Tool is activated (when the discrete chance tool button is pressed) you can place a discrete
chance node (page 208) in the Network Pane (page 167): Simply click the mouse somewhere within the Network
Pane. When you have placed the discrete chance node the select tool (page 151) is normally activated again. If you
want keep the Discrete Chance Tool activated (to create a series of nodes) hold down the SHIFT key while placing a
node.

4.1.51 Decision Tool

The Decision Tool can be activated either from the Decision Tool item of the Edit Menu (page 181) or from the
Decision Tool button in the Edit Mode (page 122) Tool Bar (the button shown in Figure 1).

Figure 1: The Decision Tool button from the Edit Mode Tool Bar.

When the Decision Tool is activated (when the Decision Tool button is pressed) you can place a decision node
(page 209) in the Network Pane (page 167): Simply click the mouse somewhere within the Network Pane. When
you have placed the decision node, the select tool (page 151) is normally activated again. If you want to keep the
Decision Tool activated (to create a series of nodes) hold down the SHIFT key while placing a node.

152 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.52 Discrete Function Tool

The Discrete Function Tool can be activated either from the Discrete Function Tool item of the Edit Menu (page 181)
or from the discrete function tool button in the Edit Mode (page 122) Tool Bar (the button shown in Figure 1).

Figure 1: The Discrete Function Tool button from the Edit Mode Tool Bar.

When the Discrete Function Tool is activated (when the discrete function tool button is pressed) you can place a
discrete function node (page 213) in the Network Pane (page 167): Simply click the mouse somewhere within the
Network Pane. When you have placed the discrete function node the select tool (page 151) is normally activated
again. If you want keep the Discrete Function Tool activated (to create a series of nodes) hold down the SHIFT key
while placing a node.

4.1.53 Change Link Tool

The Change Link Tool can be used to replace a parent node (page 196) in a link (page 146) with another node. The
old and new parent nodes must be compatible. That is, they must be of the same class, and have an identical state set.
During this operation the CPT (page 226) of the child node remains unchanged.

The Change Link Tool is activated by first selecting the link (page 146) (i.e., left-click at or near the link so it gets
highlighted), then right-clicking at the background of the Network Pane (page 167) to activate the pop-up menu for the
pane, then selecting the “Change Link to. . . ” item. The parent node can be switched to any of the compatible nodes
on the list (see Figure 1).

Figure 1: Right click on a link and select the item “Change Link to. . . ” will yield a list of compatible nodes that may
replace the current parent node in the link.

© Copyright 2020, HUGIN EXPERT A/S 153

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.54 Link Tool

The Link Tool can be activated either from the Link Tool item of the Edit Menu (page 181) or from the Link Tool
button in the Edit Mode (page 122) Tool Bar (the button shown in Figure 1).

Figure 1: The Link Tool button from the Edit Mode Tool Bar.

When the Link Tool is activated (when the Link Tool button is pressed) you can drag a link (page 146) from one node
to another in the Network Pane (page 167): Press the left mouse button somewhere within one node and drag the cursor
into another node. Then, release the mouse button again. When you have created the link, the select tool (page 151) is
normally activated again. If you want to keep the Link Tool activated (to create a series of links) hold down the SHIFT
key while creating the link.

4.1.55 Reverse Link Tool

The Reverse Link Tool can be activated either from the Reverse Link item of the Edit Menu (page 181) or from the
Reverse Link Tool button in the Edit Mode (page 122) Tool Bar (the button shown in Figure 1).

Figure 1: The Reverse Link button from the Edit Mode Tool Bar.

The Reverse Link functionality is activated only when a single link has been selected (click the left mouse button at or
near a link).

See Link Reversal (page 148) for more information.

4.1.56 Utility Tool

The Utility Tool can be activated either from the Utility Tool item of the Edit Menu (page 181) or from the utility tool button in the Edit Mode (page 122)
Tool Bar (the button shown in Figure 1).

Figure 1: The Utility Tool button from the Edit Mode Tool Bar.

When the Utility Tool is activated (when the Utility Tool button is pressed) you can place a utility node (page 211) in
the Network Pane (page 167): Simply click the mouse somewhere within the Network Pane. When you have placed
the utility node, the select tool (page 151) is normally activated again. If you want keep the Utility Tool activated (to
create a series of nodes) hold down the SHIFT key while placing a node.

154 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.57 Tables Pane Button

The Tables Pane can be activated from the Tables Pane Button in the Edit Mode Tool Bar (the button shown in Figure
1).

Figure 1: The Tables Pane Button from the Edit Mode Tool Bar.

4.1.58 EM Learning Button

EM Learning can be activated either through the EM Learning item of the Network Menu or from the EM Learning
Button in the Edit Mode Tool Bar (the button shown in Figure 1).

Figure 1: The EM Learning Button from the Edit Mode Tool Bar.

Please note that the EM Learning Wizard provides a powerful set of tools for doing EM learning (including reading
data directly from a data base and a means of including prior knowledge about the conditional probability distributions
and densities).

4.1.59 Adaptation Button

Adaptation (Sequential Learning) can be activated either through the Adaptation item of the Network menu or from
the Adaptation Button in the Run Mode (page 121) Tool Bar (the button shown in Figure 1).

Figure 1: The Adaptation Button from the Edit Mode (page 122) Tool Bar.

4.1.60 Case Generator Button

The Case Generator (page 373) can be activated either through the Simulate Cases item of the File Menu (page 179)
or from the Case Generator Button in the Run Mode (page 121) Tool Bar (the button shown in Figure 1).

Figure 1: The Case Generator Button from the Edit Mode Tool Bar.

© Copyright 2020, HUGIN EXPERT A/S 155

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.61 Toolbar

The tool bar can be customized to include a button for the CDVT function (see Figure 1).

Figure 1: The Toolbar tab.

Back

4.1.62 Save As

The save as function is activated by selecting the Save As item of the File Menu (page 179).

The save as function is similar to the Save (page 156) function except that it always asks for a name of a file in which to
save the network (the save function just saves the network in the file from which the network was loaded or previously
saved). Furthermore, the save as function allows for changing the format of the saved file. Possible formats are:

• .net: Save the network in 6.0 net-format (OOBN)

• .net(5.7): Save the network in 5.7 net-format

• .hkb(5.7): Save the network as a Knowledge Base

• password protected hkb: Save the network as a Knowledge Base, and protect the file with a password.

4.1.63 Save

The save function is activated either by selecting the Save item of the File Menu (page 179) or by clicking the save
button in the Main Window (page 174) Tool Bar. Figure 1 shows the save button.

Figure 1: The save button from the Main Window Tool Bar.

When the save function is activated the user is able to save the currently selected network in the HUGIN network
format through a standard save dialog.

If you want to save your network in a new file you should use the Save As (page 156) function.

4.1.64 Save All

The save all function is activated by selecting the Save All item of the File Menu (page 179).

The save all function works by invoking the Save (page 156) function for all current networks. This function is
particularly useful to ensure that an OOBN is consistent.

156 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.65 Save Elimination Order

The Save Elimination Order (save triangulation) function can be activated by selecting the “Save Elimination Order”
item of the Network Menu (page 173) when the network is in run mode. It will save an elimination order corresponding
to the junction tree in the chosen file.

4.1.66 Save All Classes in Single File As. . .

The Save All Classes in Single File As. . . function is activated by selecting the item of the File Menu (page 179).

The single file will contain all classes loaded in HUGIN at the time. This enables the user to store multiple class
definitions in a single file. (Please note that any flat networks will not be included in the file).

4.1.67 Copy

The copy function is activated either from the Copy item of the Edit Menu (page 181) or from pressing the copy button
which is found in both the Edit Mode (page 122) Tool Bar and the Run Mode (page 121) Tool Bar (see Figure 1).

Figure 1: The copy tool button from the Main Window (page 174) Tool Bar.

When you have activated the copy function, you have the selected sub-network copied onto the clipboard of the
Windows system. Then you can use the paste function (page 157) in the HUGIN Graphical User Interface to make a
copy of it in the same or another Network Pane (which must be in Edit Mode).

When you cut a selected sub-network, all internal links in the sub-network are copied to the clipboard. Also links from
external nodes to nodes within the selection are copied and can be restored when pasting. Links from nodes within the
selection to external nodes, however, are not copied.

When pasting a sub-network from the clipboard, a link from an external node to a node within the sub-network is
restored if the external node “exists” in the new network. Here, we say that a node “exists” if a node appears with
the same node name (page 196) as the external node in the original HUGIN network. The external node in the new
network needs not have the same node label (page 196) as the external node in the original network. If the external
node does not “exist” in the new network, the link is not restored. This has impact on the conditional probability table
(page 226) of the node which the link pointed to and one should reconstruct it.

4.1.68 Paste

You can activate paste either by selecting the Paste item from the Edit Mode (page 122) or by pushing the paste button
from the Main Window (page 174) Tool Bar. Figure 1 shows the paste button.

Figure 1: The paste button from the Main Window Tool Bar.

The paste function lets you insert what is currently stored on the clip board. In Edit Mode (page 122) you can cut
(page 158) or copy (page 157) a sub-network in the Network Pane (page 167) and afterwards paste it in the same

© Copyright 2020, HUGIN EXPERT A/S 157

HUGIN Graphical User Interface Documentation, Release 8.9

Network Pane or in the Network Pane of another HUGIN network (Bayesian network (page 327), LIMID (page 327),
or object-oriented network (page 328)).

4.1.69 Cut

The cut function is activated either by selecting the Cut item of the Edit Menu (page 181) or by pressing the cut tool
button (see Figure 1) of the Main Window (page 174) Tool Bar.

Figure 1: The cut tool button from the Main Window Tool Bar.

The cut function can only be activated in edit mode and when one or more nodes or causal links are selected in the
Network Pane.

The selected sub-network will be deleted from the Network Pane and copied to the clipboard when the cut function is
activated. Then you can paste (page 157) this sub-network to other open HUGIN networks or you can paste it in other
applications having access to the clipboard.

When you cut a selected sub-network, all internal links in the sub-network are copied to the clipboard. Also links from
external nodes to nodes within the selection are copied and can be restored when pasting. Links from nodes within the
selection to external nodes, however, are not copied.

When pasting a sub-network from the clipboard, a link from an external node to a node within the sub-network is
restored if the external node “exists” in the new network. Here, we say that a node “exists” if a node appears with
the same node name (page 196) as the external node in the original HUGIN network. The external node in the new
network needs not have the same node label (page 196) as the external node in the original network. If the external
node does not “exist” in the new network, the link is not restored. This has impact on the conditional probability table
(page 226) of the node which the link pointed to and one should reconstruct it.

4.1.70 Delete

The delete function is activated either by selecting the Delete item of the Edit Menu (page 181) or by pressing the
delete tool button (see Figure 1) of the Main Window (page 174) Tool Bar.

Figure 1: The delete tool button from the Main Window Tool Bar.

The delete function can only be activated in edit mode (page 122) and when one or more nodes or links are selected in
the Network Pane (page 167).

The selected objects will be deleted from the network. It will not be copied to the clipboard. The cut (page 158)
function is very similar to the delete function, but it copies the deleted objects to the clipboard.

158 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.71 Delete State

The delete state function can be activated from the Delete State item in the Edit Menu (page 181) or from the delete
state button in the Edit Mode (page 122) Tool Bar (the button shown in Figure 1).

Figure 1: The delete state tool button from the Edit Mode Tool Bar.

The delete state function deletes a state/decision of the (discrete) node currently selected. The function only works for
discrete chance nodes (page 208) and decision nodes (page 209).

The delete state function can only be activated when the currently selected node has two or more states.

4.1.72 Close

The close function is activated by selecting the Close item in the File Menu (page 179).

The close function closes the currently selected network window. If there has been changes to the network of this
network window, the user is asked if he/she wants to save these changes before the network window is closed.

4.1.73 Close All

The close all function is activated by selecting the Close All item in the Window Menu (page 178).

The close all function closes all network windows currently open in the Main Window (page 174). If there has been
changes to the network of a network window, the user is asked if he/she wants to save these changes before this
network window is closed.

4.1.74 Open

The open function is activated either by selecting the Open item of the File Menu (page 179) or by pressing the open
button from the Main Window (page 174). Figure 1 shows the open tool button.

Figure 1: The open button from the Main Window Tool Bar.

The open function in HUGIN is like the open function in most other applications: It opens a saved HUGIN network. It
can open files of both HKB format (compiled HUGIN network format) and NET format (standard network description
format).

If the file is a password protected HKB file, a password dialog opens, in which the user can specify the password. If
the password is incorrect, opening the file will fail.

© Copyright 2020, HUGIN EXPERT A/S 159

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.75 New

The new function can be activated by selecting the New item of the File Menu (page 179) or by pressing the New tool
button (see Figure 1) in the Main Window (page 174) Tool Bar.

Figure 1: The new button from the Main Window Tool Bar.

The new function opens a new clean network window (page 171) where you start constructing a new HUGIN network
(Bayesian network (page 327), LIMID (page 327), or object-oriented network (page 328))

4.1.76 Exit

Exit is activated by selecting the Exit item of the File Menu (page 179). You can also activate exit by simply closing
the Main Window (page 174).

The exit function closes all Network Windows (page 173) and exits from the HUGIN Graphical User Interface. Each
time a network window is closed, the HUGIN Graphical User Interface asks you to save the network of this window
if it contains unsaved changes.

4.1.77 Zooming

You can zoom in or out on the currently selected network using the Zoom sub item found in the Network Menu
(page 173) of the Main Window (page 174).

This function is useful on large networks to get a better view of the whole network. The Zoom Pane is shown in Figure
1.

Figure 1: The Zoom Pane activated via the Zoom sub item of the Network Menu of the Main Window.

You can also perform zooming operations using the following keyboard shortcuts:

160 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• Ctrl + ArrowUp: Zoom in on the network (and monitor windows for discrete nodes, if in Run Mode). Current
magnification is multiplied by 1/0.9.

• Ctrl + ArrowDown: Zoom out on the network (and monitor windows for discrete nodes, if in Run Mode).
Current magnification is multiplied by 0.9.

• Ctrl + Home: Set magification to 100% for the currently selected network (and its monitor windows for discrete
nodes, if in Run Mode).

• Shift + Home: Set magnification for the currently selected network (and its monitor windows for discrete nodes,
if in Run Mode) such that the network fits the available area of the network window.

• Ctrl + Shift + ArrowUp: Similar to Ctrl + ArrowUp, except that only monitor windows are scaled.

• Ctrl + Shift + ArrowDown: Similar to Ctrl + ArrowDown, except that only monitor windows are scaled.

• Shift + End: Zoom to selected nodes, making the selected nodes fill out the entire view.

Scaling the monitor windows can be useful if they overlap.

4.1.78 Print

HUGIN has print facilities to print out a network in three different forms: You can print the network graph (page 161),
the node tables (page 163) of the selected nodes, and the probability distributions (page 163) for selected nodes in Run
Mode (page 121).

4.1.79 Print Network

The print network function can be activated either by selecting the Print Network item from the File Menu (page 179)
or by pressing the print network button (see Figure 1) in the Main Window (page 174) Tool Bar.

Figure 1: The print network button from the Main Window Tool Bar.

The print (page 161) network function prints the network graph of the currently selected network window (page 171)
using the print dialog shown in Figure 2.

© Copyright 2020, HUGIN EXPERT A/S 161

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The General and Network tabs of the print network dialog.

As per default, the network will be printed on a single sheet, making large networks be scaled down. If the scale factor
is increased, the network might be too large to fit within the size of a single sheet of the selected media type, and hence
will be printed on several sheets (indicated in rows-by-columns format).

Checking the option “include monitors on page” will result in all visible monitors (page 183) in the network being
printed as well.

162 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: The Page Setup dialog of the print network dialog.

Selecting the “Write as BMP” item of the File Menu (page 179), the network graph can also be printed to a BMP file.

4.1.80 Print Node Table

The print node table function can be activated either by selecting the Print Node Table item from the File Menu
(page 179) (only in Edit Mode) or by pressing the print node table button (see Figure 1) in the Edit Mode Tool Bar.

Figure 1: The print node table button from the Edit Mode Tool Bar.

The print node table function prints (page 161) the tables (CPTs (page 226), experience tables, fading tables, or utility
tables (page 218)) of the currently selected nodes using a standard print dialog.

Selecting the “Write as BMP” item of the File Menu (page 179), the node tables can also be written to a BMP file.

4.1.81 Print Probabilities

The print probabilities function can be activated either by selecting the Print Probabilities item from the File Menu
(page 179) (only in Run Mode) or by pressing the print probabilities button (see Figure 1) in the Run Mode (page 121)
Tool Bar.

Figure 1: The print probabilities button from the Run Mode Tool Bar.

© Copyright 2020, HUGIN EXPERT A/S 163

HUGIN Graphical User Interface Documentation, Release 8.9

The print probabilities function prints (page 161) the posterior probability distributions for the selected nodes. When
you activate the print probabilities function, a standard print dialog appears.

Selecting the “Write as BMP” item of the File Menu (page 179), the probability distributions can also be written to a
BMP file.

4.1.82 Generate Network HTML Documentation

Using the generate documentation tool it is possible to automatically generate a documentation of the selected network.
The generate documentation tool will generate a HTML documentation of the selected network describing the user
defined properties of the network including network and node descriptions, attribute descriptions, and node state
descriptions.

Notice that the generate documentation tool may use a significant amount of time to document a large and complex
model.

4.1.83 Statistics

The statistics function can be activated by selecting the “Statistics” item of the Network Menu. This brings up the
“Statistics” panel showing various statistics about the network and it’s nodes as depicted in Figure 1.

Figure 1: The “Statistics” pane in an empty network.

164 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.84 Recall Policies

The Recall Policies feature is activated from Run Mode (page 121) by pressing the Recall Policies button (see Figure
1).

The function recalls the policies stored using the Store Policies (page 165) function. This is a valuable feature when
performing analysis and experimenting with the decisions of the LIMID - as one can revert to the original policies
when done.

Note: Modifying the LIMID automatically discards any stored policies.

Figure 1: The ‘Recall Policies’ button from the Run Mode Tool Bar.

4.1.85 Store Policies

The Store Policies feature is activated from Run Mode (page 121) by pressing the Store Policies button (see Figure 1).

The function stores a temporary backup in memory containing all policies. The stored policies can be recalled by
pressing the Recall Policies (page 165) button. This is a valuable feature when performing analysis and experimenting
with the decisions of the LIMID - as one can revert to the original policies when done.

Note: Modifying the LIMID automatically discards any stored policies.

Figure 1: The ‘Store Policies’ button from the Run Mode Tool Bar.

4.1.86 Reset uninstantiated policies

The reset uninstantiated policies feature is activated from Run Mode (page 121) by pressing the reset uninstantiated
policies button (see Figure 1).

The function resets any uninstantiated policies to the uniform distribution.

Figure 1: The ‘Reset uninstantiated policies’ button from the Run Mode Tool Bar.

© Copyright 2020, HUGIN EXPERT A/S 165

HUGIN Graphical User Interface Documentation, Release 8.9

4.1.87 Rename Network

The rename network function can be activated by selecting the “Rename Network” item of the Network Menu
(page 173) or by right-clicking the title bar of the network. This brings up the “Rename Network” panel depicted
in Figure 1.

Figure 1: The “Rename Network” pane.

Note, when working with OOBNs the name of the network must be unique within the OOBN. Furthermore, changing
the name of a network instantiated in another network will change the name of the instance nodes derived from the
network. Warning: if the name of such a network is changed without the network containing the derived instances
being open, the OOBN will become corrupt. HUGIN will give a warning in that case, but if the warning is ignored,
the network with the derived instances can no longer be opened!

The name of a network can also be changed by selecting the Save as (page 156) item in the File Menu (page 179).

4.1.88 Show Last Error

The show last error function is activated by selecting the Show Last Error item of the View Menu (page 176).

If you get an error in HUGIN, you can use this function to view the error message and a description of the error in a
small dialog box.

4.1.89 Bug Report

The Report a Bug function can be activated by selecting the Report a Bug item of the Help Menu (page 180). Should
you encounter a bug, an undesired behavior, or if you wish to suggest improvements of the HUGIN Graphical User
Interface, you can use this convenient on-line facility. We very much appreciate any feedback.

4.1.90 Report Beliefs

The report beliefs function can be activated either by selecting the Report Beliefs item from the View Menu (page 176)
(only in Run Mode) or by pressing the right mouse button on a node in the node list.

The report beliefs function prints the posterior probability distributions for the selected nodes to the network log.

166 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.2 Network Windows and Menus

4.2.1 Network Pane

The Network Pane is the part of a network window (page 171) which contains the graph of the current network. It
displays the relationship between the nodes (page 196) represented by links (page 146). The Network Pane is visible
in both Edit Mode (page 122) and Run Mode (page 121).

Figure 1 shows the Network Pane containing a network (page 327).

4.2.2 Network Properties

Network properties can be viewed by selecting the Network Properties item of the Network Menu (page 173). It allows
you to set up the HUGIN Graphical User Interface tool as suits you best.

In the network properties dialog box are seven tabs covering different parts of the tool:

• Attributes (page 172)

• Auto Propagation (page 127)

• Compilation (page 124)

• Description

• DBN (page 172)

• Display (page 194)

• Groups and Colors (page 195)

• Monitors (page 183)

• Object-Orientation (page 328)

• Online EM Adaptation (page 230)

• Toolbar (page 156)

All these tabs except for the Description tab are covered elsewhere in the manual (under their name). The Description
tab contains a simple text editor pane for describing the network for documentation purposes. The user has the option
of allowing the support of hyperlinks or not by selecting th “HTML” check box. The network properties dialog box
and the Description tab are shown in Figure 1.

© Copyright 2020, HUGIN EXPERT A/S 167

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The network properties dialog box with the Description tab selected.

The “HTML” check box is located at the bottom of the panel. This check box allows the user to specify if hyperlinks
should be allowed or not in the Network and the Node description (page 197). If the check box is selected the
description text is saved as html and hyperlinks are allowed. (see Figure 2).

The “Edit” check box is located at the top right corner when selecting “HTML”.(see Figure. 2). Selecting it allows
the editing of the “description text” and of course the creation of hyperlinks. If it is not selected and hyperlinks are
present in the text, they can be activated by clicking on them or their hyperlink paths can be visible on the status bar
by pointing at them with the mouse.

168 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The network properties dialog box with the Description tab selected and html check box selected.

Create a hyperlink: To create a hyperlink select the text to turn into a link and right click on the mouse. A pop-up
displays (see Figure 3.) which gives the user three options:

© Copyright 2020, HUGIN EXPERT A/S 169

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: The network properties dialog box in edit mode. Creating a hyperlink.

• Link to a file initiates a file chooser panel which allows the user to select a file to link to. If the selected text
had already a file link associated with it, the path to that file is selected in the file chooser. Selecting a file and
pressing “Select” associates the selected text with the file.

• Link to a web site initiates a panel that prompts the user to type the address of a website (Figure 4). If the
selected text was already associated with a link to a web site, the link is displayed in the field. Pressing OK after
typing the url will associate the selected text with the url.

• Remove link as it suggests, removes the link from the selected text.(if there is one).

Figure 4: The dialog that prompts the user to type in a web site address.

170 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

The creation of hyperlinks in the “Node Properties” panel (page 197) is done in the same way as above if the html
check box is selected in the “Network Properties” panel.

The activation of the hyperlinks is possible in the network panel (page 167) by pressing SHIFT + Right mouse button
and in the Network Properties panel and Node Properties panel if they are not in edit mode.

The documentation generated by the Generate documentation (page 164) option(Menu-Network-Generate documen-
tation (page 173)) includes the hyperlinks created in Network and Node description. The hyperlinks can also be
activated from the generated document.

Pointing on a hyperlink with the mouse, displays the link’s path in the status bar at the bottom of the network panel.

When changing from html mode to plain text mode, (by unselecting the html check box) a panel with a warning
message prompts the user to confirm the action because all hyperlinks will be lost if the descriptions change to plain
text. The hyperlinks in the Network description are lost immediately. The node descriptions are still available when
changing back to html mode if they haven’t been edited while in plain text mode.

If you are editing or running a network (Bayesian network (page 327), influence diagram (page 327), or object-oriented
network (page 328)), you can view the network description by pressing SHIFT + right mouse button in the Network
Pane (page 167).

4.2.3 Network Window

Within the Main Window (page 174) you can open a series of network windows. Each network window allows
you to edit or run a HUGIN network (Bayesian network (page 327), LIMID (page 327), or object-oriented network
(page 328))

The network windows can appear in two different ways depending on the mode you are currently working in. If you
are constructing (editing) a network, the network window is in Edit Mode (page 122) (see Figure 1). If you are using
the network for computations, the network window is in Run Mode (page 121) (see Figure 2).

Figure 1: A network window in Edit Mode.

© Copyright 2020, HUGIN EXPERT A/S 171

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: A network window in Run Mode.

4.2.4 Network Attributes

A set of Network Attributes for the model can be defined in the Network Properties Attributes tab (see Figure 1). An
Attribute is a key-value pair defining a variable’s name and its value. The Network Attributes defined in this panel
are completely ignored by the HUGIN GUI1. The Attributes can however be accessed using the HUGIN API, which
enables the GUI User to pass parameters to a user program from within the model. This is useful for wiring a user
program with a model when for instance a node’s state must be mapped to a traffic light’s red, amber or green lights.
To add a new Attribute, write a name in the name bar (shown inside the “List of Attributes” frame) and click ‘Add’.
Attribute descriptions can be associated with an attribute name only after creation.

Figure 1: The Network Properties dialog box showing the Network Attributes tab.

Attributes can also be defined on nodes. See Node Attributes.

4.2.5 Network Properties DBN Pane

Various Dynamic Bayesian Networks (DBN) parameters can be modified in the Network Properties DBN tab, shown
in Figure 1. The parameters that can be modified are: The Number of Time Slices: Specifies the number of time
slices that is generated when the model is compiled. Boyen-Koller approximation: Specifies the level of Boyen-Koller
approximation to be used. The options are: Disabled: No approximation is used. Partial Boyen-Koller approximation
(move time window and prediction) Full Boyen-Koller approximation (move time window, prediction and inside time
window) More details can be read about HUGIN’s implementation of DBN models, time slices and Boyen-Koller
approximation in HUGIN C API Help Document distributed along with the software.

Figure 1: The network properties dialog box with the DBN tab selected.

172 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.2.6 Network Menu

The Network Menu (shown in Figure 1) is found in the menu bar of the Main Window (page 174).

The Network Menu contains items for different actions that can be performed on a HUGIN model. Please note that
some of the actions are available only in Run Mode.

Figure 1: The contents of the Network Menu.

© Copyright 2020, HUGIN EXPERT A/S 173

HUGIN Graphical User Interface Documentation, Release 8.9

4.2.7 Main Window

The Main Window is built up to contain a series of network windows (page 171) each showing an open HUGIN
network (Bayesian network (page 327), LIMID model (page 327), or object-oriented network (page 328)). The Main
Window has a menu bar, a tool bar (called the Main Window Tool Bar), and a pane which can contain a number of
network windows. Below this pane is the status bar which shows different information about the currently selected
network window.

Please note that each item of the menu bar and the tool bar is clickable at the image in Figure 1. This provides you
with a quick means of getting to the relevant information.

Figure 1: The Main Window

4.2.8 About

The About item of the Help Menu (page 180) Help Menu gives you information about version, license, copyrights,
contact information, etc. Also, you get information about the HUGIN Development Environment, and application
program interfaces available if you wish to develop your own applications based on Bayesian-network technology.

174 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The about dialog box showing contact information, information about the HUGIN Development System,
etc.

Figure 2: The about dialog showing version and copyright information.

© Copyright 2020, HUGIN EXPERT A/S 175

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: The about dialog box showing license information.

4.2.9 View Menu

The View Menu is found in the menu bar of the Main Window (page 174). It contains items which allow the user to
change the view of the currently selected network. The View Menu is shown in Figure 1.

176 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The View Menu of the Main Window.

© Copyright 2020, HUGIN EXPERT A/S 177

HUGIN Graphical User Interface Documentation, Release 8.9

4.2.10 Window Menu

The Window Menu is found in the menu bar of the Main Window (page 174). It contains items which allow the user
to arrange the currently selected network windows (page 171) within the Main Window. The Window Menu is shown
in Figure 1.

Figure 1: The Window Menu of the Main Window.

178 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.2.11 Wizards Menu

The Wizards Menu is found in the menu bar of the Main Window (page 174). It contains a number of items: The general
Learning Wizard (page 249), the EM Learning Wizard (page 263), the Analysis Wizard (page 242), the Hidden Node
Analyzer (page 263), the Feature Selection Analyzer (page 266), the Adaptation Wizard (page 250), the Parameter
Sensitivity Wizard (page 270) and the Code Wizard (page 262). The Wizards Menu is shown in Figure 1.

Figure 1: The Wizards Menu of the Main Window.

4.2.12 File Menu

The File Menu (shown in Figure 1) is found in the menu bar of the Main Window (page 174).

The File Menu contains items covering functions for manipulating network files (open, close, save, etc.).

© Copyright 2020, HUGIN EXPERT A/S 179

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The File Menu.

4.2.13 Help Menu

The Help Menu is found in the menu bar of the Main Window (page 174).

The Help Menu contains items for different kinds information about the HUGIN Graphical User Interface. Figure 1
shows the Help Menu.

180 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The Help Menu.

4.2.14 Edit Menu

The Edit Menu (shown in Figure 1) is found in the menu bar of the Main Window (page 174). The Edit Menu contains
items covering functions mainly for constructing a HUGIN network. This means that most of them are only active in
Edit Mode (page 122). Some of them, however, can also be used in Run Mode (page 121).

© Copyright 2020, HUGIN EXPERT A/S 181

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The Edit Menu.

4.2.15 Options Menu

The Options Menu is found in the menu bar of the Main Window (page 174). It contains an item for making different
kinds of alignment operations on the currently selected nodes and an item that provides you with a dialog box for
customizing the HUGIN Graphical User Interface in different ways.

Figure 1: The Options Menu from the Main Window.

182 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.2.16 Policy Window

A policy window that displays the policies for a given decision node (page 209). If the node is instantiated then the
policy is ignored and the policy window is disabled. Only policies with parent configurations of a non-zero probability
are displayed. This is indicated by collapsing columns corresponding to parent configurations of zero probability,
which happens e.g. when a parent node has evidence entered (see Figures 1 and 2).

See also Single Policy Update (page 241).

Figure 1: Example of a policy window for the node ‘Drill’ of the oil wildcatter example (page 495)

Figure 2: Example of a policy window for the node ‘Drill’ with zero-probability configurations collapsed. (Parent
node is in state ‘cl’)

4.2.17 Monitor Windows

In Run Mode (page 121) you can open Monitor Windows for all or some of the nodes. This is done by selecting the
nodes and then choosing the Show Monitor Windows item from the View Menu (page 176). You can also choose
the Show Monitors item from the Network Pane Menu which is activated when you press the right mouse button
somewhere in the network pane (page 167) while working in Run Mode. There are three types of monitor windows (see
Figure 1, Figure 2, and Figure 3) - one for each of the node types: discrete chance node (page 208), continuous chance
node (page 209), and decision node (page 209). You cannot open a monitor window for a utility node (page 211).

Figure 1: A monitor window for a discrete chance node.

© Copyright 2020, HUGIN EXPERT A/S 183

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: A monitor window for a continuous chance node.

Figure 3: A monitor window for a decision node.

A monitor window shows the computed results (i.e., posterior marginal distribution and expected utility function) for
a node:

• Discrete chance nodes: The probability of each state. In a LIMID both the probability and the expected utility
of each state under the current strategy are shown.

• Continuous chance nodes: The mean, variance (SD), and the PDF (probability density function) graph.

• Decision nodes: The probability and expected utility of each action (decision option) under the current strategy.

Monitor windows for continuous chance nodes can open with or without showing the graph display below the pane
showing mean and variance (depending on the settings in Network Properties as described below). You can open and
close it by clicking the small button on the right of the mean and variance. You can chose different end points as
the mean plus/minus an integral multiple of the variance from the two drop down lists below the pane containing the
graph.

On the right side of the graph there is a slider which can be used to zoom in on the x-axis to spot local peaks on the
graph. Just below this slider is a button which should be pressed after each propagation to update the graph if auto
update of graphs (page 128) is not enabled. HUGIN does not automatically update the graphs because this could take
a very long time for large networks.

You can customize the monitor windows to your needs in the Monitors tab of the Network Properties (page 167) dialog
box. Figure 4 shows the Monitors tab.

184 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: The Network Properties dialog box showing the Monitors tab.

You can configure the monitors to show at most a certain number of states in the Monitor States group box. For
continuous chance nodes, you can specify if you always want the monitor to open with the graph pane and you can
specify the end points (in multiples of the variance) of the graph.

It is also possible to configure monitors to display means and variance for numeric nodes (See Figure 5), whether
utilities should be displayed for chance nodes (LIMIDs) and whether Utilities and Belief bars should be arranged side
by side or in sequence.

© Copyright 2020, HUGIN EXPERT A/S 185

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 5: A Numeric node shown with Mean and Variance.

You can also specify the graph precision. Normally, you would want the graph as precise as possible but if you have a
large network with many continuous chance nodes and poor performance, you might save some time if you decrease
graph precision. Different display modes are available for the monitor windows. For discrete chance nodes there are
four different modes:

Normal Mode. This is the default mode, showing the current marginal distribution for the node. Relative Difference
Mode. This mode shows the relative change of each probability with respect to what it was before new evidence
was inserted and propagated. The change is displayed in percent. Absolute Difference Mode. This mode shows the
absolute change of each probability with respect to what it was before new evidence was inserted and propagated.
Mixed Mode. This mode is similar to Normal Mode, except that below each bar is shown another (slimmer) bar
indicating the probability before new evidence was inserted and propagated. Display mode is changed by right-
clicking on the monitor, and by selecting “Display Mode” (Figure 6).

Figure 6: The Normal Mode before evidence has been entered and propagated.

Figure 7 shows a monitor in Normal Mode for a discrete chance node before evidence is entered and propagated.

Figure 6: The Normal Mode before evidence has been entered and propagated.

Figure 8 shows the same monitor in Normal Mode after evidence has been entered and propagated.

Figure 7: The Normal Mode after new evidence.

186 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 9 shows the monitor in Relative Difference Mode after the evidence has been entered and propagated.

Figure 9: The Relative Difference Mode after new evidence.

Figure 10 shows the monitor in Absolute Difference Mode after the evidence has been entered and propagated.

Figure 10: The Absolute Difference Mode after new evidence.

Figure 11 shows the monitor in Mixed Mode after the evidence has been entered and propagated.

Figure 11: The Mixed Mode after new evidence.

For continuous chance nodes there are two different modes:

1. Normal Mode. This is the default mode, showing the current marginal density function for the node.

2. Mixed Mode. In this mode, both the new an the old marginal density functions are shown.

Please note that selection of display mode for continuous monitors has effect only when the monitor is expanded,
showing the marginal density function (i.e., the display mode has no effect on the mean and variance values shown in
the upper part of the monitor).

Figure 12 shows a monitor in Normal Mode for a continuous chance node before evidence is entered and propagated.

Figure 12: The Normal Mode before evidence has been entered and propagated.

© Copyright 2020, HUGIN EXPERT A/S 187

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 13: The Normal Mode after new evidence.

Figure 14: The Mixed Mode after new evidence.

For decision nodes there are two different modes:

1. Normal Mode. This is the default mode, showing the probability and expected utility for the each decision
option for the node.

2. Absolute Difference Mode. This mode shows the absolute change in the probability and the expected utility for
each decision option with respect to what it was before new evidence was inserted and propagated.

Figure 15: The Normal Mode before evidence has been entered and propagated.

Figure 15: The Normal Mode after new evidence.

Figure 16: The Absolute Difference Mode after new evidence.

Display modes are selected through the popup menu that appears when right-clicking a monitor window.

188 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.2.18 Preferences

The preferences dialog box is opened from the Options Menu (page 182). It allows the user to customize the HUGIN
user interface. Figure 1 and Figure 2 shows the preferences dialog box with each of the two tabs chosen.

Figure 1: The preferences dialog box with the General Options tab chosen.

In the General Options tab (Figure 1) you can specify

• Choose a language. Currently supporting English and Japanese.

• how many files you want to be shown in the recently used file (page 426) list of the File Menu (page 179),

• if and how often you want to auto-save (auto-save file is named <netname>_AUTOSAVED.net),

• if you want a sound indication when an error occurs,

• if you want error messages to appear in popup dialog boxes or just in the status bar of the Main Window
(page 174)

© Copyright 2020, HUGIN EXPERT A/S 189

HUGIN Graphical User Interface Documentation, Release 8.9

• the number of most recent error messages to be kept in a history list of errors (accessible through the Show Last
Error item of the View Menu (page 176))

• if you want warnings to appear when performing operations on OOBNs that may lead to a situation of in-
consistency (making it impossible to load the OOBN later on) - such operations can be performed when only
sub-networks of an OOBN (page 50) have been loaded (useful when several people work on the same overall
project), and could, for example, be operations like renaming a class, an input node (page 211), or an output
node (page 212), changing the node category (page 196) or kind of an input node, changing the number of states
of an output node, or delete an input node or an output node,

• if you want HUGIN to use fixed font size (it may be a good idea to disable this property, if you are running
HUGIN on a small screen with a high resolution).

• if you want HUGIN to give a compilation warning when the compilation process may require a large amount of
memory or involve a large number of computations when generating tables from expressions,

• if you want the Node List Pane (page 227) to be displayed in Run Mode (page 121),

• if you want network windows (page 171) to be repainted while dragging for resizing,

• if you want HUGIN to check for updates on the internet each time it starts up,

• if you want to use an image file as wallpaper on the background of the Main Window (page 174),

• if you want to connect to a database using a JDBC driver (in Analysis Wizard (page 242), Learning Wizard
etc.)select the folder that includes the database JDBC drivers.

• which browser you wish to use for displaying these help pages.

190 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The preferences dialog box with the Display Options tab chosen.

In the Display Options tab (Figure 1) you can specify: * the way in which tables (page 225) are displayed * how to
get a nodes table shown in the table pane * which graph layout algorithm (page 145) to use

© Copyright 2020, HUGIN EXPERT A/S 191

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: The preferences dialog box with the Belief Bar Colors tab chosen

In the Belief Bar Colors tab (Figure 3) you can change the default colors for the bars showing beliefs, findings,
inconsistencies, likelihoods, and locked findings used in the Node List Pane (page 227) and the monitor windows
(page 183).

Figure 4 shows the color select dialog window which appears when you click any of the buttons in the Belief Bar
Colors tab.

192 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: The color selection dialog box

4.2.19 Window List

At the bottom of the Window Menu (page 178) you can find a list of the currently open network windows (page 171).
If you select one of these windows, it will be the currently selected window and appear on top of all other network
windows.

4.2.20 HUGIN Web Site

From the Help Menu (page 180) you can select the HUGIN Web Site item. This opens your registered browser and
takes you to the HUGIN WWW pages (http://www.hugin.com).

4.2.21 General Help

You are currently looking at the HUGIN general help pages. These pages can be accessed from the HUGIN Graphical
User Interface by selecting the Help Topics item of the Help (page 180) menu.

© Copyright 2020, HUGIN EXPERT A/S 193

http://www.hugin.com

HUGIN Graphical User Interface Documentation, Release 8.9

4.2.22 Display

In the Network Properties (page 167) dialog box you find the Display tab which allows you to change different
parameters in the display of the network. Figure 1 shows the Display tab.

Figure 1: The Network Properties dialog box showing the Display tab.

At the top of the Display tab you can specify the width and height of the nodes in the Network Pane (page 167). Also,
there are three radio buttons for selecting how the textual identity (i.e., name (page 196) and/or label (page 196)) of a
node should be displayed.

The font used for displaying the textual identity can be selected in the middle region.

At the Grid area you can set up a grid used in the Network Pane (page 167) to help arranging the nodes. Keyboard
shortcuts are available for controlling grid functions:

194 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• Ctrl + . (dot): Toggles the value of Show Grid.

• Ctrl + , (comma): Toggles the value of Snap to Grid. When set, this makes new nodes be placed with the center
at the nearest grid point.

• Shift + , (comma): Snaps the selected nodes to the nearest grid points.

At the bottom area you can set a background image for the network panel.

4.2.23 Groups and Colors

You can specify different node groups as well as link groups in HUGIN which can be used to group nodes and links
of a network. Each group has assigned a color so that in the display of the network it is easy to distinguish nodes and
links of different groups. You can specify/edit the node groups and link groups of your network in the Groups and
Colors tab of the Network Properties dialog box.

Node Groups To modify the node groups of the current network open the the Network Properties dialog, navigate to
the ‘Groups and Colors’ tab followed by the ‘Node Groups’ tabs as shown in Figure 1.

Figure 1: The Network Properties dialog box showing the Node Groups tab.

When you use HUGIN, you always use eight default groups (maybe without recognizing them as groups). Each of the
different types of nodes have their own default group: discrete chance nodes, continuous chance nodes, utility nodes,
decision nodes, interface nodes, instance nodes, discrete function nodes, and finally function nodes.

You add a new (user defined) group by clicking the ‘Add’ button and specifying a group name and a group color in the
pop-up window. You can also rename a group, delete it, or move it up and down in the node groups list. For the eight
default node groups you are allowed to alter the color only.

At the bottom of the Groups and Colors tab, you can add a description to the currently selected user defined node
group.

Node Groups The modification of link groups is similar to modification of node groups. Select the ‘Node Groups’ tab
as shown in Figure 2.

Figure 2: The Network Properties dialog box showing the Link Groups tab.

The node group named ‘Default Link’ is the group a link belongs to when it has not been assigned any other group.
For this link group you are allowed to change the color. User defined link groups are added to, modified in and deleted
from the list below. To add a new link group click the ‘Add’ button and fill in a name and select a color in the pop-up
window. You can rename a group, delete it, or move it up and down in the link groups list. Use the description field to
enter your own description of any selected user defined link group.

Assigning selected Nodes or Links to Groups You can assign one or more nodes or links in the Network Pane to a
group by selecting them (hold down shift and left-click on the links or nodes you wish to select) and clicking the right
mouse button which opens a menu. From this menu, use the Assign to Group item to assign the selected nodes or links
to a group. The menu is shown in Figure 3. This way you can also remove a number of selected nodes or links from a
specific group by selecting the No Group sub item of the Assign to Group item.

Figure 3: The Network Properties dialog box showing the Link Groups tab.

Note that you cannot assign nodes to link groups or links to node groups, so when a number of links are selected the
menu allows you to assign them to a link group and when a number of nodes are selected the menu allows you to
assign them to a node group.

You can only assign nodes or links to groups in Edit Mode.

Once, a number of nodes or links have been assigned to a group all the nodes or links of this group can be selected in
one operation by clicking the right mouse button which opens a menu. From this menu, use the Select Node Group
item to select a node group or use the Select Link Group to select a link group.

© Copyright 2020, HUGIN EXPERT A/S 195

HUGIN Graphical User Interface Documentation, Release 8.9

Node groups can be selected in this way in both Edit Mode and Run Mode, while links can only be selected in this
way in Edit Mode.

Back

4.3 Nodes and Tables

4.3.1 Node

The nodes are one of the basics in constructing a HUGIN network (Bayesian network (page 327), LIMID (page 327),
or object-oriented network (page 328)). Currently, HUGIN has five types of nodes that differ in appearance and
semantics.

• Discrete Chance Nodes (page 208) - represent random variables with a discrete finite state space.

• Continuous Chance Nodes (page 209) - represent random variables with a continuous infinite satet space having
a Gaussian (normal) distribution.

• Decision Nodes (page 209) - represent decisions or actions with a discrete state space.

• Utility Nodes (page 211) - represent the utility function one or more decisions are to be compared on.

• Instance Nodes (page 209) - represent instances of other networks, enabling object-oriented specification of
networks (both Bayesian networks and influence diagrams).

• Function Nodes (page 210) - computes a value based on expressions

The graph of a network consist of the nodes and the links (page 146).

4.3.2 Node Name (Node Identifier)

The node name (or node identifier) is a unique name which all nodes must have. Initially, HUGIN assigns a name to
a new node. If you should later want to change this name, it can be done in Edit Mode (page 122) in the Tables Pane
(page 224) or in the Node Properties (page 197) dialog box.

Please beware of the different between the node name and the node label (page 196).

4.3.3 Node Label

The node label is used by HUGIN to display as the label on the nodes. It does not need to be unique in the actual
network. Initially, a node has no node label and HUGIN uses the node name (page 196) as the label. If you should
want to assign a new node label to a node, it can be done in Edit Mode (page 122) in the Tables Pane (page 224) or in
the node properties (page 197) dialog box.

Please beware of the different between the node label and the node name (page 196).

196 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.3.4 Node Properties

You can open the node properties dialog box by selecting a node and then choosing the Node Properties item of the
Edit Menu (page 181). You can also just select a node and somewhere within the Network Pane (page 167) press the
right mouse button. This opens a menu from which you can choose the Node Properties item.

Figure 1 shows the node properties dialog box where the user can add a description for the node, as plain text.

Figure 1a shows the node properties dialog box with hyperlinks enabled in the node description. The difference
between figure 1 and figure 1a, is the Edit check box in figure 1a which switches the description box between edit
mode and display mode . For information on how to enable html, edit in html mode and create hyperlinks go to
Network Properties Panel (page 167)

The Node properties pane is organized in four tabs which are documented separately:

• Node tab (page 201)

• States tab (page 219)

• Table tab (page 218)

• Attributes tab (page 204)

Figure 1: The node properties dialog box showing the Node tab.

© Copyright 2020, HUGIN EXPERT A/S 197

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1a: The node properties dialog box showing the Node tab when HTML is selected in Network Properties Pane.

Figure 2 shows the node properties dialog box for an Instance Node (page 209). It is organized in three tabs which are
documented separately:

• Node tab (page 201)

• Interface tab (page 207)

• Attributes tab (page 204)

Figure 2: The node properties dialog box showing the Node tab of an Instance Node.

198 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.3.5 Node Locator

The Node Locator provides an easy way to select nodes based upon (parts of) their name. When first clicked, the Node
Locator will show a list of all nodes in the network (Figure 1). It is then possible to select any of these by clicking on
them or by using the up/down keys to navigate the list, and enter to select a node.

© Copyright 2020, HUGIN EXPERT A/S 199

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The Node Locator showing all nodes in the network.

It is possible to restrict the Node Locator to showing only nodes whose name matches an entered regular expression
(Figure 2).

Figure 2: The Node Locator showing only the nodes matching the expression.

When specifying the expression, the following special characters can be used:

• *: Match everything a number of times

• .: Match everything one time

• \w: Match a word character [a-zA-Z_0-9]

• \W: Match a non-word character: [^\w]

200 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• \d: Match a digit: [0-9]

• \D: Match a non-digit: [^0-9]

• \s: Match a whitespace character: [\t\n\x0B\f\r]

• \S: Match a non-whitespace character: [^\s]

Note, in particular, that it is not possible to match a given character a number of times using the “*” character. I.e., the
expression a*b will match abbbb as well as aaaab. Note further, that the expression is interpreted as having a trailing
“*” character. That is, the written expression must only match the beginning of the node name for the node to be
included in the list.

4.3.6 Node Type

To be able to use nodes as arguments in expression (page 149) functions, node types are introduced for discrete chance
nodes and decision nodes. Below are listed the different node types:

• Labelled - Each state has a label. This is similar how all discrete nodes looked in old versions of HUGIN.

• Boolean - Has two states: false and true.

• Numbered - Each state has a numeric value. This means that you can make expressions define the sum of two
numbered nodes. You can also specify standard discrete distribution functions for numbered nodes if you fit the
state values to what is required for the distribution function (typically: 0, 1, 2,. . .).

• Interval - Each state represents an interval on the real axis. The entire set of states span a continuous interval on
the real axis. This is used to approximate a continuous random variable. You can specify standard continuous
distribution functions for interval nodes, or you can use them in arithmetic functions.

The type of a node can be specified through its node table (page 225) via the Functions menu or via the Type menu of
the Node tab of the Node Properties (page 197) dialog.

4.3.7 Node Tab

The Node Tab of the Node Properties (page 197) dialog allows the user to edit different attributes of the nodes of a
HUGIN domain. The Node Tab is shown in Figure 1.

© Copyright 2020, HUGIN EXPERT A/S 201

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The node properties dialog box showing the Node Tab.

In the top section of the Node tab you can specify the name (page 196), label (page 196), type (page 201), group
(page 195), interface type (page 213) (if any), and size of the selected node. Please note that, except for size, these can
only be specified in Edit Mode (page 122). Below these fields, a free-text description for the node can be provided.
Figure 2 shows the node properties dialog box with hyperlinks enabled in the node description. The difference between
figure 1 and figure 2, is the Edit check box in figure 2 which switches the description box between edit mode and
display mode . For information on how to enable html, edit in html mode and create hyperlinks go to Network
Properties Panel (page 167).

202 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The node properties dialog box showing the Node tab when HTML is selected in Network Properties Pane
(page 167).

A Node Properties dialog showing the Node Tab of an Instance Node is shown in Figure 2.

© Copyright 2020, HUGIN EXPERT A/S 203

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: The node properties dialog box showing the Node tab of an Instance Node (page 209).

Note that the dialog in Figure 3 has a field named class, where it is possible to configure which network class the node
is an instance of.

4.3.8 Node Attributes

The Attribute tab of the Node Properties (page 197) is used to specify the attributes of a node. Each Attribute consists
of an Attribute Name and an Attribute Description. The attribute name (or attribute identifier) is a unique name to
identify an attribute. Node attribute name can only consists of C like identifier characters and must not start with HR_
since the HUGIN Graphical User Interface uses attributes starting with HR_. Attribute description consists of a string
which can be used to give a more detailed description of the node. It is possible to modify, delete, add attribute both
in Edit Mode (page 122) Run Mode (page 121). To add a new attribute enter a name in the name field along with a
description in the Attribute Description field and click on the ‘Add’ button.

To rename an attribute, select its cell and start typing. A cell can be selected by tabbing the tabulator key untill it is
highlighted or by selecting it with the mouse. As soon as an attribute is selected its attribute description is displayed in
the Attribute Description field. The attribute description can be edited by editing the text in the Attribute Description
field.

To delete an attribute, select it and press the delete or back-space key.

Figure 1 shows the Attribute tab of a node.

204 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The node properties dialog box showing the Attributes Tab.

Attributes are useful in situations where you want to store additional information (knowledge) in the network apart
from cause effect relations. This feature can be very useful when using the HUGIN API and can save a lot of pro-
gramming.

4.3.9 Node State Generator

The Node States Generator function is available in Table View (page 155). Using the Node States Generator it
possible to copy states from other nodes, to transfer state values to state labels, and to automatically generate states for
numbered and interval nodes.

In case the active frame has numerous numeric nodes that need to achieve state labels it is possible to request the
operation to be performed on each numeric node.

© Copyright 2020, HUGIN EXPERT A/S 205

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The functionality for copying states and state labels.

Figure 1 shows the functionality that applies to the selected node in general.

Figure 2: The functionality for generating states of numberede nodes.

Figure 2 shows the functionality for generating states of numbered nodes while Figure 3 show the functionality for
generating states of interval nodes.

206 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: The functionality for generating states of interval nodes.

4.3.10 Interface Tab

The Interface Tab of the Node Properties (page 197) dialog allows the user to edit different attributes of an Instance
Node (page 209). The Interface Tab is shown in Figure 1.

© Copyright 2020, HUGIN EXPERT A/S 207

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The node properties dialog box showing the Interface Tab.

On the Interface tab you can specify the size (page 145) of the selected node, and the placement style of the input
nodes (page 211) and output nodes (page 212) in the Instance Node (page 209).

4.3.11 Discrete Chance Node

A discrete chance node represents a discrete random variable with a finite number of states. A discrete chance node
can be added to the current network by activating the discrete chance tool (page 152) and clicking somewhere in the
Network Pane (page 167).

When propagating (page 230), you can see the probabilities of each state in a discrete chance node either in the Node
List Pane (page 227) or by opening a monitor window (page 183) for the node.

Discrete chance nodes are assigned a type (page 201).

208 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.3.12 Continuous Chance Node

A continuous chance node (or CG node = continuous Gaussian node) represents a random variable with a Gaussian
(normal) conditional distribution function (page 115). A continuous chance node can be added to the current network
by activating the continuous chance tool (page 152) and clicking somewhere in the network pane (page 167).

Currently, there are some restrictions to the use of continuous chance nodes, partly because the underlying theory is
still being developed. The restrictions are listed below:

• The only continuous chance nodes currently supported represent variables with Gaussian (normal) distribution
functions.

• A continuous chance node cannot be parent of a discrete chance node (page 208).

• Continuous nodes cannot be used in influence diagrams. That is, continuous nodes cannot exist in a network
also containing utility nodes (page 211) or decision nodes (page 209).

4.3.13 Decision Node

A decision node represents a decision to be made by the user. A decision node can be added to the current network by
activating the Decision Tool (page 152) and clicking somewhere in the Network Pane (page 167). A Bayesian network
(page 327) extended with decision nodes and utility nodes (page 211) is called a Limited Memory Influence Diagram
(LIMID) (page 327). The decision nodes represent decisions controlled by an external user. This means that compared
to discrete chance nodes (page 208), decision nodes have no conditional probability tables (CPTs). Instead an initial
policy for the decision is specified.

In the LIMID, monitor windows (page 183) for decision nodes and Node List Pane (page 227) show the expected
utility of each decision option and the probability of choosing each option under the current strategy.

Decision nodes cannot appear in a network together with continuous chance nodes (page 209).

Decision nodes are assigned a type (page 201).

4.3.14 Instance Node

An instance node of a network represents an instance of another network. In other words, an instance node represents
a sub-network. A network containing one or more instance nodes is to be considered an object-oriented network
(page 328). An instance node is created using the Instance Tool (page 151). In order for an instance node to be
connected to other (basic) nodes, the network class of which it is an instance must contain interface nodes (page 213)
(i.e., input nodes (page 211) and/or output nodes (page 212)).

An instance node is displayed as a rounded rectangle containing the interface nodes of the instance that it represents.
See Figure 1 for an example.

© Copyright 2020, HUGIN EXPERT A/S 209

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: This object-oriented network contains an instance node, named Person_1, representing an instance of the
Person network.

4.3.15 Function Node

A function node represents a real-valued function that depends on (some or all of) the parents of the node. Function
nodes are not (directly) involved in the inference process - evidence cannot be specified for function nodes, but the
function associated with the node can be evaluated using the results of inference or simulation as input. Add a Function
node by using the Function Tool (page 151).

210 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: A Function node (F1) with a discrete and a continuous parent.

Function node values are specified as an expression (page 149) in the node model (page 227). A number of rules apply
for Function Nodes:

• If Function node has non-function node children, there must not exist a cyclic functional dependency such that
one of the function node ancestors depends on the value of the function node.

• Function value expressions can use parent Function-, Boolean-, Numbered- and Continuous node values. (cur-
rently Interval nodes are not supported).

• When a Continuous node appear in the expression, the mean of the node is used when computing the function
value.

4.3.16 Utility Node

A utility node represents an additive contribution to the utility function in a (limited-memory) influence diagram
(page 327). Thus, the utility function is the sum of all the utility nodes in the influence diagram.

Each utility function has assigned a utility table (page 218) which specifies the utility of each configuration of the
parents of the utility node (in an influence diagram, a link (page 146) from a decision node (page 209) or a discrete
chance node (page 208) represents the decision node/chance node to contribute directly to the utility function).

A utility node can be added to the current network (which will then be an influence diagram) by activating the Utility
Tool (page 154) and clicking somewhere in the Network Pane (page 167).

4.3.17 Input Node

In order for an instance, I, of a network, C, to be applied in another network, N, (via an instance node (page 209) in
N representing I), a mechanism is required for connecting I (or rather nodes of I) to other nodes of N. As we wish
to enforce modularity and information hiding, we cannot allow nodes of I to have parents outside I, as that would
violate the modularity constraint (the domain of a CPT could then contain nodes from several networks). Therefore,
we need the concept of input nodes. An input node of I (declared as such in the network class C) is to be considered a
placeholder node for a node in N to be bound to that input node.

The network in Figure 1 contains an instance of a network class, Person, describing the relationships between some
indicator parameters (say income, education, etc.) and how these affect the probability distribution over political

© Copyright 2020, HUGIN EXPERT A/S 211

HUGIN Graphical User Interface Documentation, Release 8.9

sympathy, say Republican or Democrat, for a person. The indicator variable Income, for example, might be a labelled
discrete chance variable with three states, “High”, “Medium”, and “Low”, and have associated with it the probability
distribution P(Income) = (0.1, 0.7, 0.2), reflecting the population average. Now, for an instance of this network
to be applied in our network, we need to be able to bind the indicator variable Income to a variable representing
a different probability distribution, P(Income 1) = (0.3, 0.65, 0.05), which matches our specific sub-population of
interest. Therefore, the indicator variables of the Person network are declared as input variables, which should be
bound to the actual variables of the networks in which instances of Person appears. Thus, we have created a binding
link (page 148) from the node labeled “Income 1” to the input variable “Income” of the instance node. Similarly, the
node “Edu. 1” is bound to the input node “Education”.

Figure 1: The variables “Income 1” and “Edu. 1” are bound to input variables Income and Education of the instance
node Person_1.

Input nodes shouldn’t be confused with real nodes. A real node, which is type consistent with an input node, can
be bound to that input node. That is, an input node becomes identical with the node that is bound to it. However,
if an input node hasn’t got a binding associated with it, the network containing the input node can still be used (i.e.,
compiled in to a junction tree and used for inference). In that case the input node is treated as a real node. That is,
each input node has a CPT associated with it just as any ordinary node, but this CPT is used only if no nodes have
been bound to the input node in a network containing an instance of the network in which the input node is defined.

In the tutorial on object-oriented networks (page 55), an example shows how to use input nodes.

See also the description of output nodes (page 212). Input nodes and output nodes are collectively referred to as
interface nodes.

4.3.18 Output Node

In order for an instance, I, of a network, C, to be applied in another network, N, (via an instance node (page 209)
in N representing I), a mechanism is required for connecting I (or rather nodes of I) to other nodes of N. As we
wish to enforce modularity and information hiding, we cannot allow all nodes of I to have children outside I, as that
would violate the information hiding constraint. Therefore, we need the concept of output nodes. An output node of I
(declared as such in the network class C) is visible outside I, and can thus be used as a parent node of nodes outside
I. Note that an output node cannot be a child of nodes outside I, as this would violate the modularity constraint (the
domain of a CPT could then contain nodes from several networks).

The network in Figure 1 contains an instance of a network class, Person, describing the relationships between some

212 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

indicator parameters (say income, education, etc.) and how these affect the probability distribution over political
sympathy, say Republican or Democrat, for a person. Given the bindings of the indicator variables Income and
Education (see the description of input nodes (page 211) for details) to “Income 1” and “Edu. 1”, we are interested in
the resulting probability distribution for Person_1’s political sympathy. Therefore, the variable Vote must be visible
outside instances of the network class Person. Thus, the variable Vote is made an output node of Person.

Figure 1: The variables “Income 1” and “Edu. 1” are bound to input variables Income and Education of the instance
node Person_1.

In our network, we have used the output variable Vote as a parent variable of the nodes C1 and C2.

In the tutorial on object-oriented networks (page 55), an example shows how to use input and output nodes.

See also the description of input nodes (page 211). Input nodes and output nodes are collectively referred to as
interface nodes.

4.3.19 Interface Node

An interface node is either an input node (page 211) or an output node (page 212).

4.3.20 Discrete Function Node

The table of a discrete function node is not a conditional distribution given the parents (unlike the other discrete nodes).
Instead, it is a marginal distribution which can be a function of the values of the parents.

Add a Discrete Function node by using the Discrete Function Tool (page 153).

© Copyright 2020, HUGIN EXPERT A/S 213

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: A Discrete Function node (aggregation) with a numbered and interval discrete parent and the aggregate
operator as expression.

The Discrete Function node table is specified using an expression (page 149) in the node model (page 227).

4.3.21 Expand Instance Node

The Expand Instance Node function can be activated by clicking the left mouse button just outside a collapsed instance
node (page 209). The active region surrounding a collapsed instance node is indicated by the special cursor image
shown in Figure 1.

Figure 1: The Expand Instance Node Cursor that appears when the mouse cursor is located right outside a collapsed
instance node.

The Expand Instance Node function expands an instance node so that the interface nodes (page 213) of the network
instance that the instance node represents become visible and the size of the instance node is increased. An instance
node must be expanded to create binding links (page 148) to the input nodes (page 211) of the instance node and to
create ordinary (causal) links (page 147) from its output nodes. You can also expand all (page 215) instance nodes in
one operation.

Please note that links to and from an instance node can only be selected when the node is expanded.

See also Collapse Instance Node (page 215).

214 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.3.22 Collapse Instance Node

The Collapse Instance Node function can be activated by clicking the left mouse button just outside an expanded
instance node (page 209). The active region surrounding an expanded instance node is indicated by the special cursor
image shown in Figure 1.

Figure 1: The Collapse Instance Node Cursor that appears when the mouse cursor is located right outside an expanded
instance node.

The Collapse Instance Node function collapses an instance node so that the interface nodes (page 213) of the network
instance that the instance node represents become hidden and the size of the instance node is reduced. This is useful for
making the display of a network less cluttered. You can also collapse all instance nodes (page 215) in one operation.

Please note that links to and from an instance node can only be selected when the node is expanded.

See also Expand Instance Node (page 214).

4.3.23 Expand Instance Nodes

The Expand Instance Nodes function can be activated from the View Menu (page 176). This function expands all
instance nodes (page 209) so that the interface nodes (page 213) of the network instance that the node represents
become visible. An instance node must be expanded to create binding links (page 148) to the input nodes of the
instance node and to create ordinary (causal) links (page 147) from its output nodes. Instance nodes can also be
expanded individually (page 214).

Please note that links to and from an instance node can only be selected when the node is expanded.

See also Collapse Instance Nodes (page 215).

4.3.24 Collapse Instance Nodes

The Collapse Instance Nodes function can be activated from the View Menu (page 176). This function collapses
all instance nodes (page 209) so that the display of the network becomes less cluttered. Instance nodes can also be
collapsed individually (page 215).

Please note that links to and from an instance node can only be selected when the node is expanded.

See also Expand Instance Node (page 214).

4.3.25 Expand Node List

The expand node list function can be activated from the Expand Node List item in the View Menu (page 176) or from
the expand node list button in the Run Mode (page 121) Tool Bar (the button shown in Figure 1).

Figure 1: The expand node list tool button from the Run Mode Tool Bar.

The expand node list function enables the display of states/decisions and their belief/expected utility of all nodes in
the Node List Pane (page 227).

© Copyright 2020, HUGIN EXPERT A/S 215

HUGIN Graphical User Interface Documentation, Release 8.9

You can expand a single node in the node list by clicking it with the mouse.

This function has an inverse in the Collapse Node List (page 216) function.

4.3.26 Collapse Node List

The collapse node list function can be activated from the Collapse Node List item in the View Menu (page 176) or
from the collapse node list button in the Run Mode (page 121) Tool Bar (the button shown in Figure 1).

Figure 1: The collapse node list tool button from the Run Mode Tool Bar.

The collapse node list function disables the display of states/decisions and their belief/expected utility in the Node List
Pane (page 227).

You can collapse a single node in the node list by clicking its close icon.

This function has an inverse in the expand node list (page 215) function.

4.3.27 Experience Tables

Each discrete or continuous chance node in a Bayesian network or a LIMID may be assigned a experience table.
Experience tables play an important role in (batch) parameter estimation using the EM Algorithm (page 334) and
sequential parameter update using Adaptation (page 228). Consider the Bayesian network shown in Figure 1.

Figure 1: Bayesian-network representation of “Chest Clinic”.

Experience table(s) are required in the parameter estimation process as well as in the adaptation process (adaptation
is not supported for continuous chance nodes though). To explain what happens when we start using experience
tables, let’s consider the “Smoker?” variable. To add an experience table to the variable, select the variable, do a right

216 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

click and choose “Add Experience Table” in the “Experience/Fading Table Operations” submenu. To see the created
experience table, first activate the Tables Pane by clicking the tables-pane button (as you probably did in the How to
Build BNs tutorial (page 26)), select the “Smoker?” node (if not already selected), select the “Show experience table”
item of the View menu for the node table (page 62) of “Smoker?”. The node table for the “Smoker?” variable is shown
in Figure 2.

Figure 2: Node table for the “Smoker?” discrete chance variable.

The count in the experience table represents the number of observations made so far on the “Smoker?” variable. The
value of the experience count must be greater than 0 to activate adaptation whereas the experience table must exist
to activate parameter estimation. It is possible to turn off parameter estimation for a specific parent configuration
by specifying a negative experience count for that parent configuration. If we believe the correctness of the present
conditional probability distribution or density is high, then the experience count must have a high value; otherwise,
the value of the count should be low. In the present example we assume that our belief in the correctness of the current
conditional distribution is low, thus we set the initial experience count to a small number, say 10. To modify the
experience count, just click on count cell of the experience table in the Tables Pane and enter the value 10. This means
that HUGIN assumes we have observed the value of the “Smoker?” variable 10 times so far.

You can change a specific numeric value by selecting it with the mouse cursor and typing in a new value from the
keyboard.

Experience tables can be added to many variables at the same time. To add experience tables to all the chance variables
click somewhere in the Network Pane, click the right mouse button and then choose the “Add Experience Table to All
Chance Nodes” item of the “Experience/Fading Table Operations” submenu. To add experience tables to a subset of
chance variables, select these nodes, right click, and select “Add Experience Table” in the “Experience/Fading Table
Operations” submenu.

4.3.28 Fading Tables

Each discrete chance node in a Bayesian network or a LIMID may be assigned a fading table. Fading tables only play
a role when performing sequential parameter update using Adaptation (page 228). The use of fading table is described
in detail under Adaptation (page 228) and Adaptation Tutorial (page 109).

4.3.29 Open Tables

The Open Tables function can be activated by selecting the “Open Tables” item of the Network Menu (page 173). The
tables of the selected nodes will be shown in the table panel (page 224). If the table panel is not open, it will be opened
automatically.

© Copyright 2020, HUGIN EXPERT A/S 217

HUGIN Graphical User Interface Documentation, Release 8.9

4.3.30 Utility Table

To each utility node (page 211) is associated a special instance of a node table (page 225), called a utility table.

The table of a utility node is found in the Tables Pane (page 224) when the node is selected.

The utility table specifies a utility function. For each configuration of the states of the parents, which can be discrete
chance and decision nodes, the utility table has an entry specifying a utility value of this configuration. Figure 1 shows
the table for the utility node Utility with the discrete chance node Oil and the discrete decision node Drill as parents.

Figure 1: The table for utility node Utility with parents Drill and Oil.

Each numeric value in the utility table is the utility of the parent nodes being in the states found in the top of the actual
column.

You can change a specific numeric value by selecting it with the mouse cursor and typing in a new value from the
keyboard.

4.3.31 Decision Table

With each decision node (page 209) is associated a decision table, which is very simple, as it just contains a single
column of the various decision options associated with the decision node.

As for all other node tables (page 225), a decision table appears in the Tables Pane (page 224) whenever opened and
the associated decision node is selected node in the Network Pane (page 167).

The decision table specifies the policy for the decision node.

4.3.32 Table Tab

The Table tab of the Node Properties (page 197) is used to specify different aspects about how you want to edit node
tables.

Figure 1 shows the Table tab. A list of the discrete parents (page 208) of the node appears at the top section. The order
of these parents can be altered using the Up and Down buttons. This reflects the order in which the parents appear
in the table of the node (which is displayed in the Tables Pane (page 224)) and hence determine which parents have
indices that run faster in the table.

218 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The Table tab of the Node Properties dialog box.

For discrete chance nodes (page 208) and utility nodes (page 211) one can either specify, respectively, their probability
and utility tables manually or via expressions (page 149). This choice can be indicated via the select buttons below the
Discrete Parents list (it can also be indicated via the “Switch to expressions” item of the Expressions sub-menu of the
Functions menu of the Node Table (page 225)).

If the table is specified via an expression, it might be convenient to introduce one or more of the parent nodes as Model
Nodes. A separate expression can be specified for each configuration of the model nodes. Alternatively, one may
choose to specify one big expression, typically including a number of if-then-else expressions. For more information
on this topic, please consult the Table Generator Tutorial (page 72).

4.3.33 States Tab

The States tab of the Node Properties (page 197) is used to specify the states of the current node.

Figure 1 shows the States tab. Here, you can specify the state names, state values, or state intervals depending on the
type (page 201) of the node you are currently editing.

• If the type is “Labelled”, you can type in anything as the state label.

• If the type is “Boolean”, you cannot change the two states “false” and “true”.

© Copyright 2020, HUGIN EXPERT A/S 219

HUGIN Graphical User Interface Documentation, Release 8.9

• If the type is “Numbered”, you can type in a number. Please note that the numbers must form an increasing
sequence.

• If the type is “Interval”, you can type in intervals in the format: “<number> - <number>”.

To add a new state label/value/interval enter a state name in the state name field and press Add. Optionally, a state
description can be entered.

To rename a state label/value/interval, select its cell and start typing. A cell can be selected by tabbing the tabulator
key untill it is highlighted or by selecting it with the mouse.

To delete a state, select it and press the delete or back-space key.

If the endpoints of an interval are changed for an interval node, the endpoints of the neighboring states will auto-
matically be updated such that there will be no gaps between state intervals. The symbols “infinity” or “inf” may be
used to specify an infinite right endpoint. Similarly, “-infinity” or “-inf” may be used to specify a negative infinite left
endpoint.

To rearrange the order of the state labels, first select a state and then move it up or down pressing the “Up” and “Down”
buttons.

Figure 1: The Node Properties dialog box showing the States tab of a node of type “Numbered”.

220 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.3.34 Add Experience Table to all Chance Nodes

Before performing adaptation (page 228) or EM-learning (page 334), the nodes, whose tables are to be learned, must
have an experience table added to them. The “Add Experience Table to all Nodes” function is a utility function, which
add these to all relevant nodes. It can be accessed by selecting the “Add Experience Table to all Nodes” item from
either the Network Menu (page 173), or from the popup menu (brought up by right-clicking on the network).

4.3.35 Add Fading Table to all Discrete Nodes

Before performing adaptation (page 228) on a network, one might consider adding fading tables to the nodes, since
this allows “old” values to be faded out, so that the newest learned values carry a higher weight. The “Add Fading
Table to all Discrete Nodes” function is a utility function, which add these to all relevant nodes. It can be accessed by
selecting the “Add Fading Table to all Discrete Nodes” item from either the Network Menu (page 173), or from the
popup menu (brought up by right-clicking on the network).

4.3.36 Add State

The add state function can be activated from the Add State item in the Edit Menu (page 181) or from the add state
button in the Edit Mode (page 122) Tool Bar (the button shown in Figure 1).

Figure 1: The add state tool button from the Edit Mode Tool Bar.

The add state function adds a new state (or decision option) to the node currently selected. The function only works
for discrete chance nodes (page 208) and decision nodes (page 209). If the node is a decision node, this state is named
“State n” (where n is the total number of states of the node after the new state has been added). If it is a decision node,
the new decision option is named “Action n”.

4.3.37 Copy Table

Copy Table applies to discrete chance nodes (page 208), decision nodes (page 209), continuous chance nodes
(page 209), and utility nodes (page 211). The only condition that must be met before a table can be copied from
one node to another is that the two nodes must have the same number of states and the same number of parent config-
urations (see Figure 1).

Figure 1: Sample CPTs of identical dimensions.

© Copyright 2020, HUGIN EXPERT A/S 221

HUGIN Graphical User Interface Documentation, Release 8.9

The Copy Table function is activated in Edit Mode (page 122) by selecting the node from which you wish to copy the
table and clicking the right mouse button (see Figure 2). As shown in Figure 2 the menu item shows which node the
table is copied from. To paste the copied table to a given node, you have to select that node, click the right mouse
button, and choose the Paste Table item.

Figure 2: Copy / Paste Table items.

4.3.38 Manually Specify Table

Specifying the table of a discrete chance node or utility node manually as an alternative to specifying Expressions
(page 149) allows the user to edit each number in the node table directly. The table is shown in the Tables Pane
(page 224).

You can select to specify a table manually by selecting the Switch to manual item of the Expressions submenu of the
Functions menu of the Node Table (page 225).

222 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.3.39 Arrange Tables

The tables appearing in the Tables Pane (page 224) are displayed beginning in the upper left corner of the pane. If,
however, the node that has its table displayed in the upper left corner of the pane gets deselected (making its table
disappear and leave an empty area in the pane) or the tables have been moved around and are overlapping, it can be
desirable to rearrange the tables so that empty space gets filled and the tables are not overlapping. To do so, the Arrange
Tables Button in the Network Window (page 171) Tool Bar can be activated. Figure 1 shows a sample arrangement of
the node tables (page 225) in the Tables Pane, and Figure 2 shows the same tables after rearrangement has taken place.

Figure 1: The tables displayed in the Tables Pane can be rearranged by activating the Arrange Tables Button (red
arrow) in the Network Window Tool Bar.

Figure 2: The rearranged tables.

© Copyright 2020, HUGIN EXPERT A/S 223

HUGIN Graphical User Interface Documentation, Release 8.9

4.3.40 Close Tables

The Close Tables function can be activated by selecting the “Close Tables” item of the Network Menu (page 173). The
tables of the selected nodes will be removed from the table panel (page 224).

4.3.41 Tables Pane

The Tables Pane is used in the Edit Mode (page 122). It displays the table (if any) of the kind selected in the node table
(page 225) for each selected node. For each discrete chance node (page 208) and utility node (page 211) an actual
table is displayed (if it has one of the kind selected). For each decision node (page 209) it shows the initial policy and
for each continuous chance node (page 209) the distribution function is specified through a mean and a variance for
each configuration of the discrete parents.

Figure 1 shows the Tables Pane containing CPTs for two discrete chance nodes.

Figure 1: The Tables Pane.

The Tables Pane appears when the Tables-Pane Button in the Network Window Tool Bar is activated (see Figure 2).
This button is a radio button, so to make the Tables Pane disappear, simply reactivate the button.

224 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The Tables Pane appears when the Tables-Pane Button in the Network Window Tool Bar is activated, and it
disappears when the button is reactivated.

See also Arrange Tables (page 223).

Under the Functions menu item it is possible export and import the content of a node table to text file.

4.3.42 Node Table

To each chance node and each utility node in a Bayesian network or a (limited-memory) influence diagram is assigned
a table, specifying a function associated with the node. Also, each decision node has a table associated with it,
specifying an initial policy for the decision variable represented by the node. These tables are referred to as node
tables. The types of the tables differ depending on the types of the nodes.

The HUGIN Graphical User Interface provides a number of powerful features for displaying node tables, including
resizing, collapsing selected sets of columns, graphics display modes, etc.

The probabilities and utilities of discrete chance nodes and utility nodes, respectively, can be specified manually
(i.e., directly through click-and-type operations) or they can be specified indirectly through specification of powerful
expressions (page 149), which (if appropriate) can save a lot of work. The initial policy for a decision node can also
be specified both manually and using expressions. Notice that the initial policy of a decision node is updated, if Single
Policy Updating (page 241) is invoked.

When working in Edit Mode (page 122) with the Tables Pane (page 224) open, the currently selected nodes will have
their tables displayed in the Tables Pane.

See the Node Table Tutorial (page 62) for more information on node tables.

© Copyright 2020, HUGIN EXPERT A/S 225

HUGIN Graphical User Interface Documentation, Release 8.9

4.3.43 Conditional Probability Table (CPT)

Each discrete chance node in a Bayesian network or a LIMID is assigned a conditional probability table (abbreviated
CPT). The node name (page 196) and node label (page 196) displayed in the Tables Pane (page 224) when working
in Edit Mode (page 122) specifies a currently selected node. If this node is a discrete chance node, the table shown in
the Tables Pane (page 224) is a CPT.

Only if you have chosen to specify the table manually (page 222) (alternative to using expressions (page 149)), you
can see the entire CPT. Otherwise, you see the table of expressions specifying the table.

The table shown in the Tables Pane is different depending on the type of the currently selected node:

• If the currently selected node is a discrete chance node (page 208), the table is a true CPT.

• If the currently selected node is a utility node (page 211), the table is a utility table (page 218) rather than a CPT.

• If the currently selected node is a decision node (page 209), the table represent the policies associated with the
decision.

• If the currently selected node is a continuous chance node (page 209), the table specifies a Gaussian (normal)
distribution function (page 115) rather than a CPT.

Figure 1 shows a CPT for the discrete chance node Grass with two parents, Sprinkler and Rain.

Figure 1: The CPT for Grass.

The states of the currently selected node are those found in the left most column below the parent labels. You can
change these state names by selecting them with the mouse cursor and typing in a new name from the keyboard.

Each numeric value in the CPT is the probability of the currently selected node being in the state found in the left most
column in the actual row - when the parents (if any) are in the states found in the top of the actual column.

You can change a specific numeric value by selecting it with the mouse cursor and typing in a new value from the
keyboard.

4.3.44 Absorb Node

A discrete chance node (page 208) of a Bayesian network or a LIMID can be absorbed. The absorb node function can
be activated in the Edit Menu (page 181).

A discrete chance node is absorbed by reversing all arcs emerging from A using the Arc Reversal (page 148) operation.

As node absorption proceeds by a sequence of arc-reversal operations, new links may be added in the process. New
links are added in order to maintain the conditional independence and dependence statements encoded in the network
with respect to the unabsorbed variables.

Once all links emerging from A have been reversed, they are removed from the network. This completes the absorption
of A. The node A is not deleted from the network.

226 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.3.45 Toggle Private Nodes

The Toggle Private Nodes function can be activated by selecting the “Toggle Private Nodes” item of the View Menu
(page 176). It toggles the display of private nodes in the instance nodes, when the network is in Run Mode (page 121).
That is, if the private nodes are hidden, the Node List (page 227) will only display the input and output nodes of an
expanded instance node (page 209).

4.3.46 Move Interface Node

To make the display of a network containing instance nodes (page 209) less cluttered it is often desirable to alter the
ordering of the input nodes (page 211) and/or output nodes (page 212) (known as interface nodes) of the instance
nodes so as to minimize the number of links crossing each other. An input node (output node) of an instance node can
be moved one position to the left (right if the Shift key is pressed) simply by clicking an input node (output node) with
the left mouse button.

4.3.47 Models

Conditional probability tables (CPTs) for discrete chance nodes, utility tables for utility nodes, and initial policies for
decision nodes can be specified compactly through models. A model consists of a list of model nodes and a set of
Expressions (page 149) (one expression for each configuration of the states of the model nodes). The model nodes
constitute a subset of the parents of the node to which the model belongs. This subset is specified under the Table Tab
(page 218) of the Node Properties dialog box.

Specification of CPTs through model is particularly useful when the conditional probability distribution for a vari-
able is complex and follows (at least approximately) certain functional or distributional forms. In such cases it is
cumbersome to specify the conditional probability table (CPT) manually.

When one needs different expressions depending on the states of one or more parent nodes, the use of model nodes
can be quite convenient, as complicated expressions can be considerably simplified.

If there are no model nodes, the model contains a single expression.

Examples of the use of models and model nodes are given in the Table Generator Tutorial (page 72).

4.3.48 Node List Pane

The Node List Pane is used in the run mode (page 121) network window (page 171). It displays the nodes of the current
network in a collapsible list. For instance nodes, it is possible to limit the displayed nodes to the public nodes (that
is, to the input (page 211) or output (page 212) nodes of the instance). The Node List Pane is placed to the left of the
network pane (page 167), unless the display of it has been turned off via the Toggle Node List item of the View Menu
(page 176).

Figure 1 shows a Node List Pane of a HUGIN network (Bayesian network (page 327), LIMID (page 327), or object-
oriented network (page 328)).

© Copyright 2020, HUGIN EXPERT A/S 227

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The Node List Pane.

When you expand a node in the node list (page 215), you can see the computed results of the last propagation
(page 230) in a format similar to monitor windows (page 183).

4.4 Algorithms

4.4.1 Adaptation

The adaptation algorithm (sequential updating) will update the conditional probability distribution of a Bayesian
network in the light of inserted and propagated evidence (i.e., experience). The adaptation algorithm only applies
to the discrete chance nodes. The algorithm is useful when the graphical structure and an initial specification of the
conditional probability distributions are present but the modeled domain changes over time, the model is incomplete,
or the model simply does not reflect the modeled domain properly.

In this section we give a quick overview of sequential updating of the conditional probability tables. It is assumed
that the reader is familiar with the methodology of Bayesian networks and influence diagrams as well as usage of
the HUGIN Graphical User Interface (the graphical user interface). The basic concepts of Bayesian networks are
described in Introduction to Bayesian Networks (page 19). You can also learn more about influence diagrams in the
same section. To get an introduction to the HUGIN Graphical User Interface refer to the tutorial A Small Bayesian
Network (page 26).

Sequential updating, also known as adaptation or sequential learning, makes it possible to update and improve the
conditional probability distribution for a domain as observations are made. Adaptation is especially useful if the model
is incomplete, the modeled domain is drifting over time, or the model quite simple does not reflect the modeled domain

228 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

properly. Note that the graphical structure and initial specifications of conditional probability distributions must be
present prior to adaptation.

The adaptation algorithm implemented in HUGIN is developed by Spiegelhalter & Lauritzen (1990) (page 519).
See also the papers by Cowel & Dawid (1992) (page 519) and Olesen et al. (1992) (page 519) for a more detailed
mathematical description of the algorithm.

Spiegelhalter and Lauritzen introduced the notion of experience. The experience is quantitative memory which can
be based both on quantitative expert judgment and past cases. Dissemination of experience refers to the process of
computing prior conditional distributions for the variables in the network. Retrieval of experience refers to the process
of computing updated distributions for the parameters that determine the conditional distributions for the variables in
the network.

In short, the adaptation algorithm will update the conditional probability distributions of a Bayesian network in light
of inserted and propagated evidence (i.e., experience). Note that adaptation can only be applied to discrete chance
variables.

The experience for a given discrete chance node is represented as a set of experience counts Alpha0,. . . ,Alphan-1,
where n is the number of configurations of the parents of the node and Alphai > 0 for all i; Alphai corresponds to the
number of times the parents have been observed to be in the ith configuration. However, note that the “counts” do not
have to be integers – they can be arbitrary (positive) real number, thus the counts are only conceptual. The experience
counts are stored in a table, known as the experience table.

When an experience table is created, it is filled with zeros. Since zero is an invalid experience count, positive values
must be stored in the tables before adaptation can take place. The adaptation algorithm will only adapt conditional
distributions corresponding to parent configurations having a positive experience count. All other configurations
(including all configurations for nodes without experience tables) are ignored. This convention can be used to turn
on/off adaptation at the level of individual parent configurations: setting an experience count to a positive number will
turn on adaptation for the associated parent configuration; setting the experience count to zero or a negative number
will turn it off.

Experience tables can be deleted. Note that this will turn off adaptation for the node associated with the experience
table and the initial conditional distribution will be equal to conditional distribution of the node at deletion time.

The adaptation algorithm also provides an optional fading feature. This feature reduces the influence of past (and
possibly outdated) experience in order to let the domain model adapt to changing environments. This is achieved
by discounting the experience count Alphai by a fading factor Deltai, which is a positive real number less than but
typically close to 1. The true fading amount is made proportional to the probability of the parent configuration in
question.

To be precise: if the ith parent given the propagated evidence is pi, then Alphai is multiplied by (1-pi)+pi Deltai before
adaptation takes place. Note that the experience counts corresponding to parent configurations that are inconsistent
with the propagated evidence (i.e., configurations with pi = 0) remain unchanged. The fading for a given discrete
chance node is stored in a fading table, where each value in the table corresponds to a parent configuration. The fading
factor Deltai can be set to 1: this implies that cases are accumulated (that is, no fading takes place). Setting Deltai to
a value greater than 1 or less than or equal to 0 will disable adaptation for the ith parent configuration (just as setting
Alphai to an invalid value will do).

To activate adaptation, the Adaptation Button (page 155) may be used.

Adaptation is not supported for continuous nodes.

© Copyright 2020, HUGIN EXPERT A/S 229

HUGIN Graphical User Interface Documentation, Release 8.9

4.4.2 Online EM Adaptation

The Online EM adaptation algorithm in HUGIN is an adaptation algorithm which - like the regular adaptation algo-
rithm serves to update the conditional probability distribution in the light of inserted and propagated evidence (i.e.,
experience).

Find more details on how Online EM Adaptation works by turning the HUGIN C API Help Manual localized in the
folder where you installed HUGIN.

The Online EM adaptation algorithm implemented in HUGIN is developed by O. Cappe and E. Moulines(2009).

Configuration Parameters Configuration parameters for Online EM Adaptation are found in the Network Properties
Pane under the Online EM Adaptation tab.

Figure 1: Configuration parameters for Online EM Adaptation.

4.4.3 Propagation

Propagation describes the act of computing posterior probability distributions and expected utilities for unobserved
discrete chance nodes (page 208) and decision nodes (page 209), and distribution functions for continuous chance
nodes (page 209) given the values for the observed nodes (i.e., the evidence).

Four different propagation algorithms are available: Sum normal (page 235), max normal (page 236), sum fast retrac-
tion (page 235), and max fast retraction (page 235). Each one of these can be activated by selecting the appropriate
Propagate item of the Network Menu (page 173). In addition, two of the most common propagation algorithms (sum
normal and max normal) can be accessed by pressing one of the propagation buttons of the Run Mode (page 121)
Tool Bar (see Figure 1). If auto propagation (page 127) has been specified, propagation will take place each time new
evidence is entered.

Figure 1: The two propagation buttons from the Run Mode tool bar. Propagation methods for these buttons are (from
left to right): sum normal (page 235) and max normal (page 236).

4.4.4 PC Algorithm

Two constraint-based algorithms are available for structure learning: The PC algorithm and the NPC algorithm
(page 231).

The HUGIN PC algorithm, which is a variant of the original PC algorithm due to Spirtes, Glymour & Scheines (2000)
(page 519), belongs to the class of constraint-based learning algorithms. The basic idea of these algorithms is to derive
a set of conditional independence and dependence statements (CIDs) by statistical tests.

The algorithm performs the following steps:

• Statistical tests for conditional independence are performed for all pairs of variables (except for those pairs for
which a structural constraint has been specified – for more information, see the help page for the Structural
Constraints page of the Learning Wizard).

• An undirected link is added between each pair of variables for which no conditional independences were found.
The resulting undirected graph is referred to as the skeleton of the learned structure.

• Colliders are then identified, ensuring that no directed cycles occur. (A collider is a pair of links directed such
that they meet in a node.) For example, if we find that A and B are dependent, B and C are dependent, but A
and C are conditionally independent given S, not containing B, then this can be represented by the structure A
–> B <– C.

230 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• Next, directions are enforced for those links whose direction can be derived from the conditional independences
found and the colliders identified.

• Finally, the remaining undirected links are directed randomly, ensuring that no directed cycles occur.

One important thing to note about the PC algorithm is that, in general, it will not be able to derive the direction of all
the links from data, and thus some links will be directed randomly. This means that the learned structure should be
inspected, and if any links seem counterintuitive (e.g., sweat causes fever, instead of the other way around), one might
consider using the Learning Wizard (page 249) (which provides a means of specifying structural domain knowledge)
or the NPC algorithm (page 231), which allows the user to interactively decide on the directionality of undirected
links.

Traditional constraint-based learning algorithms produce provably correct structures under the assumptions of infinite
data sets, perfect tests, and DAG faithfulness (i.e., that the data can be assumed to be simulated from a probability
distribution that factorizes according to a DAG). In the case of limited data sets, however, these algorithms often
derive too many conditional independence statements. Also, they may in some cases leave out important dependence
relations.

Generally, it is recommended to use the NPC algorithm, as the resulting graph will be a better map of the (conditional)
independence relations represented in the data. In particular, when the data set is small, the NPC algorithm should be
the one preferred. The NPC algorithm, however, has longer running times than the PC algorithm.

4.4.5 NPC Algorithm

Two constraint-based algorithms are available for structure learning: The PC algorithm (page 230) and the NPC
algorithm.

NPC stands for Necessary Path Condition, and it is a criterion developed by researchers at Siemens in Munich for
solving some of the problems of constraint-based learning algorithms like the PC algorithm. The basic machinery
is the same in the PC and the NPC algorithms (i.e., they are both based on generating a skeleton derived through
statistical tests for conditional independence).

The NPC algorithm seeks to repair the deficiencies of the PC algorithm, which occur especially in the face of limited
data sets. The solution provided by the NPC algorithm is based on inclusion of a criterion known as the necessary path
condition (page 232). This criterion forms the basis for introducing the notion of ambiguous regions (page 232), which
in turn provide a language for selecting among sets of inter-dependent uncertain links. The resolution of ambiguous
regions is performed in interaction with the user.

In constraint-based learning algorithms, the skeleton of the graph is constructed by not including a link in the induced
graph whenever the corresponding nodes are found to be conditional independent. There can, however, be inconsis-
tencies among the set of conditional independence and dependence statements (CIDs) derived from limited data sets.
That is, not all CIDs can be represented simultaneously. The inconsistencies are assumed to stem solely from sampling
noise; i.e., we still assume that there exists a perfect independence map of the (unknown) probability distribution from
which the data is generated.

The number of inconsistencies in the set of CIDs reflects structural model uncertainty. Thus, the number of uncer-
tainties is a confidence measure for the learned structure and can as such be used as an indication of whether or not
sufficient data has been used to perform the learning. The inconsistent CIDs produce multiple solutions when inducing
a directed acyclic graph (DAG) from them. These solutions differ with respect to the set of links included.

To resolve the inconsistencies, the NPC algorithm relies on user interaction where the user gets the opportunity to
decide on directionality of undirected links and to resolve the ambiguous regions (page 232).

© Copyright 2020, HUGIN EXPERT A/S 231

HUGIN Graphical User Interface Documentation, Release 8.9

The Necessary Path Condition

Informally, the necessary path condition says that in order for two variables X and Y to be independent conditional
on a set S, with no proper subset of S for which this holds, there must exist a path between X and every Z in S (not
crossing Y) and between Y and every Z in S (not crossing X). Otherwise, the inclusion of Z in S is unexplained. Thus,
in order for an independence statement to be valid, a number of links are required to be present in the graph.

Ambiguous Regions

When the absence of a link, a, depends on the presence of another link, b, and vice versa, we define a and b to be
inter-dependent. Both a and b constitute what we call uncertain links. An ambiguous region is a maximal set of
inter-dependent links. That is, an ambiguous region consists of a set of uncertain links.

The main goal is to obtain as few and small ambiguous regions as possible. It should be noted that deterministic
relations between variables will also produce ambiguous regions (see example below).

If there are some uncertain links (or links that need to be directed), the user is offered the possibility of providing
information as to how the ambiguous regions should be resolved. A special, intuitive graphical interface is provided
for this interaction.

Resolving Ambiguous Regions and Undirectedness

When using the NPC algorithm, an intuitive graphical interface is provided for resolving the structural uncertainties
(if any) found by the algorithm. Figure 1 shows an example of a structure with unresolved uncertainties.

Figure 1: The structural uncertainties found by the NPC algorithm. Black (undirected) links are selectable and their
directionality can be determined by the user. The links of each ambiguous region are drawn in the same color. These
links are also selectable and will be removed or kept, depending on the action performed by the user.

Should you wish not to provide such information, just click the Done button, and the NPC algorithm will resolve the
uncertainties. Note, however, that directionality for undirected links will be decided on a random basis, and that for

232 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

those ambiguous regions with no information provided, all of the uncertain links will be removed, possibly resulting
in a poor model.

Resolving Undirected Links Instead of randomly determining the directionality of the links of the learned structure
that cannot be determined automatically from the data, the NPC algorithm gives the user the opportunity to determine
the directionality of such links.

The undirected links (not belonging to ambiguous regions) are drawn in black. When selected, such a link gets
highlighted and the two directionality buttons get enabled:

or or or

Which of the above appearances of the pair of buttons are used depends on the relative position of the nodes of the
selected link. Thus, it should be readily apparent which of the two buttons should be selected for achieving the desired
directionality for the selected link. However, when positioning the mouse cursor on top of a button, a tool tip will
appear after a short while, explaining precisely which direction is associated with the button in question.

Note that assigning directionality to a link may cause other links to automatically be directed. If, for example, there are
undirected links between variables x and y, between y and z, and between x and z, then enforcing the directionalities
x –> y and y –> z implies x –> z; otherwise, a directed cycle would occur.

Resolving Ambiguous Regions

An ambiguous region consists of a set of inter-dependent uncertain links: Absence of a link in an ambiguous region
depends on the presence of one or more of the other links of the region, and vice versa.

Each ambiguous region is easily identified as consisting of links in the same color. (Note that there can be so many
ambiguous regions that colors have to be reused, making it difficult from the coloring alone to distinguish them.) Also,
when selecting a link of an ambiguous region, all links of the region will be highlighted; the one selected will be drawn
bold and the other links will be drawn with double lines.

When a link of an ambiguous region has been selected, the include/exclude link buttons get enabled:

Figure 3: The include/exclude link buttons.

When a decision has been made that a link should be present or absent, each of the other links of the ambiguous region
will be affected in one of several ways:

• Unaffected.

• Disappear.

• Turned into an undirected link, not belonging to the region anymore.

• Turned into a directed link, not belonging to the region anymore.

Which of these consequence will be observed depends on the conditional independence and dependence statements
(CIDs) found from the statistical tests performed by the NPC algorithm.

© Copyright 2020, HUGIN EXPERT A/S 233

HUGIN Graphical User Interface Documentation, Release 8.9

Identify Minimal Resolutions

An ambiguous regions may consist of a large number of uncertain edges. This implies that it ay be very difficult for
the user to find an appropriate resolution of an ambiguous region.

Each ambiguous region will have at least one minimal resolution. A minimal resolution is a minimal set of edges,
which resolves the ambiguous region.

Figure 4: The identify minimal resolutions button.

When an uncertain link of an ambiguous region has been selected the button shown in Figure 4 appears. If this button
is depressed, a window showing all minimal resolutions is displayed to the user. The user may select an minimal
resolution.

Undo

Often it is impossible (or very hard) to predict the consequences of a decision made regarding directionality of an
undirected link, or regarding the presence or absence of a link of an ambiguous region. Therefore, you will probably
find the undo facility quite useful.

The most recent (non-undo) action performed can be undone by clicking the undo button:

Figure 5: The undo button.

Please note that an arbitrary number of operations performed can be undone by repeatedly clicking the undo button.

References

The interested reader is referred to the literature for a more detailed description of the notions behind the NPC algo-
rithm. See e.g.

• Steck, H. (2001). Constrained-Based Structural Learning in Bayesian Networks Using Finite Data Sets, PhD
Thesis, Institut für der Informatik der Technischen Universität München.

• Steck, H. and Tresp, V. (1999). Bayesian Belief Networks for Data Mining, Proceedings of The 2nd Work-
shop on Data Mining und Data Warehousing als Grundlage Moderner Entschidungsunterstuezender Systeme,
DWDW99, Sammelband, Universität Magdeburg, September 1999.

• Steck, H., Hofmann, R., and Tresp, V. (1999). Concept for the PRONEL Learning Algorithm, Siemens AG,
Munich.

234 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.4.6 Prop Sum Normal

The prop sum normal propagation is activated either by selecting the Prop Sum Normal item of the Network Menu
(page 173) or by pressing the corresponding button in the Run Mode (page 121) Tool Bar (see Figure 1). If you are
using auto propagation (page 127), you can specify HUGIN to use this propagation method.

The “prop sum normal” is the most commonly used propagation method. It updates all probabilities, distribution
functions, and expected utilities of the discrete chance nodes (page 208), the continuous chance nodes (page 209), and
the decision nodes (page 209), according to entered evidence.

Figure 1: The prop sum normal button from the Run Mode Tool Bar.

A propagation of evidence does not update policies in a (limited-memory) influence diagram. To update policies Single
Policy Updating (page 241) should be used.

4.4.7 Prop Max Fast Retract

The prop max fast retract propagation is activated by selecting the Prop Max Fast Retract item of the Network Menu
(page 173). If you are using auto propagation (page 127), you can specify HUGIN to use this propagation method.

The prop max fast retract propagation method can be used in HUGIN networks (Bayesian networks (page 327), influ-
ence diagrams (page 327), or object-oriented networks (page 328)) containing only discrete chance nodes (page 208).
It is similar to the max normal (page 236) method except that it shows the nodes which have received evidence dif-
ferently. Instead of showing the values of the states of the node which has received evidence, the values of the states
are shown as if this node had not received evidence. That is, the values of the node being in each of its states given
the evidence entered in all other nodes. To indicate that the node has in fact received evidence, the belief bars use the
color code for evidence (default: Red).

This propagation method can be used to check if the evidence corresponds to (one of) the most likely configuration(s)
or if the evidence suggests that one of the less likely configurations has been observed (if a state of a node has been
observed which does not have the value 100).

4.4.8 Prop Sum Fast Retract

The prop sum fast retract propagation can be activated if you are using auto propagation, you can specify HUGIN
to use this propagation method. The “prop sum fast retract” propagation method can be used in HUGIN networks
(Bayesian networks object-oriented Bayesian networks) containing only discrete chance nodes. It is similar to the
sum normal method except that it shows the nodes which have received evidence differently. Instead of showing the
true posterior probability distribution for the node, the distribution is shown as if the node had not received evidence.
That is, the distribution shown is the posterior probability distribution given the evidence entered in all other nodes.
To indicate that the node has in fact received evidence, the belief bars are painted using the color code for evidence
(default: Red).

This propagation method can be used to check if the evidence entered in a node meets the probabilities of the evidence
or if there are signs of some kind of conflict (the evidence entered is one of the most unlikely states of the node).

© Copyright 2020, HUGIN EXPERT A/S 235

HUGIN Graphical User Interface Documentation, Release 8.9

4.4.9 Prop Max Normal

The prop max normal propagation is activated either by selecting the Prop Max Normal item of the Network Menu
(page 173) or by pressing the corresponding button in the Run Mode (page 121) Tool Bar (see Figure 1). If you are
using auto propagation (page 127), you can specify HUGIN to use this propagation method.

The prop max normal propagation method can be used in HUGIN networks (Bayesian networks (page 327), influence
diagrams (page 327), or object-oriented networks (page 328)) containing only discrete chance nodes to find states
belonging to the most probable configuration (a configuration is a list of states (a1, a2,. . . , an) of the list of all nodes in
the network (A1, A2,. . . , An)).

If a state of a node belongs to the most probable configuration it is given the value 100. All other states are given the
relative value of the probability of the most probable configuration they are found in compared to the most probable
configuration. That is, assume a node N has two states a and b, and b belongs to the most probable configuration of the
entire network which has the probability 0.002. Then, b is given the value 100. Now, assume that the most probable
configuration which a belongs to has probability 0.0012. Then, a is given the value 60.

The prop max normal button which is found in the network window (page 171) Tool Bar in Run Mode (page 121) is
shown in Figure 1.

Figure 1: The prop max normal button from the Run Mode Tool Bar.

4.4.10 Rebane-Pearl Polytree

The Rebane-Pearl polytree algorithm constructs a polytree-shaped belief network approximation to a probability dis-
tribution (Rebane and Pearl, 1987).

The Rebane-Pearl algorithm is similar to the Chow-Liu tree algorithm (page 237) for constructing the “best possible”
tree-shaped belief network approximation to a probability distribution such that all edges are directed away from the
root. Instead of constructing a tree-shaped belief network approximation, the algorithm constructs a polytree-shaped
belief network.

Rebane-Pearl polytree recovery algorithm: The Chow-Liu algorithm constructs a simple tree structure (each node has
one parent — except the root). The Rebane-Pearl algorithm turns this tree into a polytree (each node can have multiple
parents, but the underlying network structure is still a tree).

References

• C. K. Chow, C. N. Liu (1968). Approximating Discrete Probability Distributions with Dependence Trees.

• G. Rebane, J. Pearl, (1987). The recovery of causal polytrees from statistical data.

236 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.4.11 Tree Augmented Naive Bayes

The Tree Augmented Naive (TAN) Bayes algorithm is based on the Chow-Liu algorithm (page 237).

The TAN algorithm is useful for constructing classification networks where a specific node of the model is target of the
reasoning. The target node is used to construct a conditional Chow-Liu tree (i.e., a Chow-Liu tree over all nodes except
the selected target) with the selected root as root of the tree. Weights are defined as conditional mutual information
(conditional on the target), and all nodes (except target) have target as an extra parent.

4.4.12 Chow-Liu Tree

A Chow-Liu tree is the “best possible” tree-shaped belief network approximation to a probability distribution such that
all edges are directed away from the root. The quality of the approximation is measured using the Kullback-Leibler
distance between the true distribution and the distribution defined by the Chow-Liu tree. When we learn from data,
the “true” distribution is defined by the frequencies of the observations.

Chow and Liu (1968) show that the optimum tree can be found as the maximum-weight spanning tree over all variables,
where the weight of each edge is given as the mutual information between the variables connected by the edge.

A Chow-Liu tree can be constructed as follows:

• Calculate the mutual information MI(Xi, Xj) for each pair (Xi, Xj).

• Consider the complete MI-weighted graph: the complete undirected graph over {X,. . . ,Xn }, where the links
(Xi, Xj) have the weight MI(Xi, Xj).

• Build a maximal-weight spanning tree for the complete MI-weighted graph.

• Direct the resulting tree by choosing any variable as a root and setting the directions of the links to be outward
from it.

Authors

• C. K. Chow, C. N. Liu (1968). Approximating Discrete Probability Distributions with Dependence Trees.

4.4.13 Junction Tree

Inference in Bayesian networks and influence diagrams are performed in a secondary structure known as a junction
tree. The junction tree for a network is generated when one switches from Edit Mode (page 122) to Run Mode
(page 121). The junction tree of the network can be displayed in a separate window, opened by selecting the Show
Junction Tree item of the View Menu (page 176).

Figure 1 shows a junction tree for the ChestClinic network.

© Copyright 2020, HUGIN EXPERT A/S 237

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Junction tree for the ChestClinic network.

To understand what a junction tree is and what it can be used for, there are several issues that may be of interest:

• What is a Junction Tree? (page 239) What is it and how is it generated?

• Inference in a Junction Tree: (page 239) How is a junction tree used for inference?

• Tools and Functionalities: (page 240) How to use the tools and functionalities offered?

Also of interest is how one can use a junction tree to detect and trace conflicting evidence (page 274).

238 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

What is a Junction Tree?

Inference in a network is conducted through message passing in a junction-tree representation of it. The junction tree
is obtained through transformation that involves the processes of moralization and triangulation. It can be shown that
exact inference in a Bayesian network requires (implicit or explicit) moralization and triangulation.

In the moralization step, an undirected link is first added between each pair of unconnected parent nodes that have
a common child node. Next, all directed links are converted to undirected links. This process results in a so-called
moral graph.

The triangulation step adds (undirected) links to the moral graph such that the resulting graph is triangulated (or
chordal). An undirected graph is chordal whenever it does not contain a cycle (i.e., a path of distinct nodes, except that
the first and the last nodes are identical) of length greater than 3 without a chord (i.e., a link between non-consecutive
nodes of the path). The maximal completely connected components or sub-graphs (i.e., where each pair of nodes are
connected to each other) of a graph are called cliques.

It is the cliques of the triangulated graph that form the nodes of the junction tree. Each clique has associated with it
a table with indices spanning the Cartesian product of the state spaces of the nodes of the clique. Thus, each clique
holds a representation of a function over all nodes of the clique. That is, a joint probability distribution over the nodes
of the clique can be represented in the clique table.

Obviously, as each clique has associated with it a table that grows exponentially in size as more nodes are added to it,
we want the cliques to be as small as possible. However, as the number of different triangulations may be as high as n
factorial, where n is the number of nodes of the network, and as the representational and computational complexities
of the resulting junction trees vary heavily over the different triangulations, it can be very difficult to find an optimal
triangulation. In fact, the complexity of this optimization problem is NP-hard (mathematical way to say that it is
impossible within reasonable time).

The HUGIN Decision Engine (HDE) offers a number of different triangulation algorithms, most of which are based
on greedy one-step look ahead heuristics. In many cases, however, an optimal (or near-optimal) triangulation can in
fact be found. The HDE offers a method for (near-)optimal triangulation, which in many cases results in junction trees
of much lower complexity than those generated using the other (heuristic) triangulation methods provided. For details,
see the description of the compile (page 124) function.

Please note that if the Bayesian network is disconnected, so is the junction tree. A disconnected junction tree is
sometimes called a junction forest.

Inference in a Junction Tree

As mentioned above, inference in a network amounts to message passing in a junction-tree representation of the
network.

An inference step (also referred to as a propagation) consists of two main phases:

• Inward message passing in which messages are sent from the leaves of the junction tree towards a root of the
tree.

• Outward message passing in which messages are sent from the root of the tree towards to leaves.

A clique, C, are allowed to send a message to a neighboring clique, D, whenever C has received messages from all
other neighbors and it has not already sent a message to D.

A message from a clique C to a neighboring clique D consists of a marginal table over the nodes that are members
of both C and D. More precisely, the message is computed from the table of C by eliminating the dimensions corre-
sponding to the nodes of C that are not members of D. Typically, elimination is performed through summation. To
compute the most likely configuration (also known as the most probable explanation (MPE)) and the probability of
this configuration, elimination is, however, performed through maximization.

© Copyright 2020, HUGIN EXPERT A/S 239

HUGIN Graphical User Interface Documentation, Release 8.9

Tools and Functionalities

The cliques of the junction tree(s) are displayed as rectangles (see Figure 2), where the upper part of the rectangle
contains a list of the nodes that are members of the clique, and the lower part contains a conflict bar indicating the
conflict measure pertaining to the evidence entered in the sub-tree rooted at the clique. For details on data conflict
analysis, please consult the data conflict analysis (page 274) section.

Figure 2: A clique of the ChestClinic junction tree.

A clique can be selected by clicking the left mouse button. When selected the border of a clique change from gray to
black. It is possible to select multiple cliques by holding down the shift key while clicking. When selecting one or
more cliques, the nodes of the selected cliques will get selected in the Network Panel (page 167).

The Junction Tree Panel offers a number of other functionalities, which are available through a tool bar of buttons and
a pull-down menu (see Figure 3).

Figure 3: A clique of the Asia junction tree.

The printer button enables print out of the junction tree. The junction tree can be printed either to a printer, or to a
file. Similarly to printing of the networks (page 161), it is possible to split the printout into several pages by setting an
appropriate scale factor in a “Junction Tree” tab in the print dialog.

The magnification glass buttons offer possibilities to zoom in and out for better viewing.

The button with the symbol offers a possibility to select a different clique as root of the tree. The functionality gets
enabled only when exactly one clique is selected. Selecting a different clique as root can be useful in the investigation
of local conflicts.

The button with the symbol gets enabled when the global conflict measure is positive. See the data conflict
analysis (page 274) for details.

The button with the symbol provides the usual sum propagation functionality.

The button with the symbol activates a help page providing much the same information as provided in this and the
data conflict analysis (page 274) section.

Evidence is indicated by highlighting evidence nodes (the color of their node symbols are changed to the evidence
color). Two different modes exist for displaying evidence nodes. Either all instances of the evidence nodes will be
highlighted or only those instances that appear in the cliques where the evidence has been entered. (Note that a node
can be a member of several cliques.) A pull-down menu (see above) is provided for selection of preferred display
mode.

240 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.4.14 Single Policy Update

A LIMID is solved by Single Policy Updating (SPU). SPU is an iterative algorithm that updates one policy at a time
and terminates when all policies have converged (i.e., more iterations change nothing). The algorithm usually finds
the globally optimal policies, but it is possible that the algorithm may get stuck at a local maximum.

The parents specified for the decision nodes determine which observations should be taken into account when decisions
are made. Ideally, we would specify all observations to be taken into account, but this may not be practical because
the size of a policy table is exponential in the number of parents. We therefore often don’t specify less important
observations as parents of decision nodes (for example, old observations are typically less important than new ones)
in order to reduce the size of the policy tables.

Unless all relevant information has been specified as parents, then it can be useful to recompute policies whenever new
information becomes available. This is because the computations take all existing observations (in addition to future
observations specified as parents of decision nodes) into account when policies are computed.

Propagation of evidence and calculation of posterior distributions are performed under the strategy computed by the
latest Single Policy Update (or under the initial strategy specified by the user, if Single Polcy Update has not been
performed). SPU assumes that entered evidence has been propagated.

The SPU algorithm computes the probability distribution and expected utility function over the states of each chance
and decision node in the LIMID.

Single Policy Updating is invoked by pressing the ‘SPU’-button of the Run Mode (page 121) Tool bar.

See also Reset uninstantiated policies (page 165), Store policies (page 165) and Recall stored policies (page 165).

Figure 1: The SPU button from the Run Mode (page 121) Tool Bar.

4.4.15 Greedy Search-And-Score Structure Learning

The greedy search-and-score algorithm for learning the structure of a Bayesian network uses a score function to
evaluate the goodness of a candidate network structure. The algorithm performs a search through the space of possible
network structures and returns the structure with the highest score. The operators used to perform the search given a
current candidate are add an arc, remove an arc and reverse an arc.

The candidate network structure is provided with a maximum likelihood estimate of the conditional probability tables
associated with the nodes of the network in order to compute the score of the candidate structure. If the data is
incomplete, the EM algorithm must be used. However, if the data is complete, this can be done by counting cases and
normalizing the counts.

For simplicity, we assume that the data is complete (by ignoring the missing data).

We also assume that the score function is decomposable. This means that the total score can be computed as a sum of
scores of the nodes in the network. This makes it easy to compute the effect of a simple modification to the network
(such as adding or removing an edge).

The user can chouse between using the Akaike Information Criterion (AIC) or the Bayesian Information Criterion
(BIC) as the score function.

The user can specify an upper limit on the number of parents of each node in the network structure.

© Copyright 2020, HUGIN EXPERT A/S 241

HUGIN Graphical User Interface Documentation, Release 8.9

4.5 Wizards

4.5.1 Analysis Wizard

The Analysis Wizard performs several kinds of analysis on a network; Based on a set of cases the wizard will calulate
the AIC-, BIC- and log-likelyhood scores, perform various data dependency and accuracy analysis.

The Analysis Wizard is activated by selecting “Analysis Wizard” in the Wizards Menu. Note that to activate the
Analysis Wizard, the network must be in runmode and consist only of discrete chance nodes.

When the Analysis Wizard is activated a window displaying the “Data Source” pane will pop up, see figure 1. The win-
dow has six tabs: “Data Source, “AIC/BIC/ll”, “Dependencies”, “Data Accuracy”, “Sampling” and “Cases/Beliefs”.

Figure 1: Empty Data Source pane; Window displayed when the Analysis Wizard is activated.

242 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Data Source pane

To perform any analysis the wizard will first need a set of cases. Cases can be imported by

• loading a HUGIN data file,

• or sampling a number of random cases.

Click on button “select file” to load a HUGIN data file or click on the tab “Sampling” to sample a number of random
cases to use as data source.

Sampling pane

Clicking on the tab “Sampling” will bring forward the sampling pane. The sampling pane is shown in figure 2.

Figure 2: Sampling pane.

Cases can be generated in two different ways: MCAR (Missing Completely at Random) or MAR (Missing at Random).
MCAR sets some values to N/A by removing values of some nodes in the generated case set randomly (i.e., MCAR
considers all the values in the generated cases and not one case at a time).

© Copyright 2020, HUGIN EXPERT A/S 243

HUGIN Graphical User Interface Documentation, Release 8.9

MAR randomly sets some values in a case to N/A based on auto-generated templates. These templates specify that
if some nodes have a specific value, then the values of a subset of the nodes are randomly set to N/A. Note that the
specification of the templates is generated randomly.

In both cases the conditional probability distribution is considered as a factor to the number of cases generated with a
specific set of observations. Also in both MCAR and MAR it is possible to indicate the percentage of missing values.

The cases generated will be based on the conditional probability distribution given by the scenario chosen in the combo
box “Sample configurations based on”.

Any cases generated will be added to the current set of imported cases.

AIC/BIC/ll pane

Clicking on the “AIC/BIC/ll” tab will bring forward the AIC/BIC/ll pane, see figure 3. The wizard calculates the AIC,
BIC and log-likelihood scores of the model given the case data.

Figure 3: AIC/BIC/ll pane.

244 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Dependencies pane

Clicking on the “Dependencies” tab will bring forward the data dependencies pane, see figure 4.

Figure 4: Data dependencies pane.

The Dependencies pane allow for inspecting the mutual information of nodes. Depending on the threshold set by the
slider, edges will be hidden according to the mutual information of the nodes. Toggle between inspecting mutual in-
formation for all nodes or nodes with directed edges by clicking the checkbox “Complete graph”. Mutual information
will be computed based on the case selected in the “Enter Case” drop down box.

Buttons at the top of the pane allows for zooming the view of the network and adjusting the scale of the slider if
possible.

• Stronger and weaker dependencies can be identified by moving the threshold slider, as edges are only displayed
if the mutual information between the connected nodes are above the threshold.

• Mutual information between all nodes can be inspected by clicking ‘Complete Graph’.

• Mutual information computation will be based on the the network instantiation chosen in the ‘Enter Case’ drop-
down list

© Copyright 2020, HUGIN EXPERT A/S 245

HUGIN Graphical User Interface Documentation, Release 8.9

Data Accuracy pane

Clicking on the “Data Accuracy” tab will bring forward the Data accuracy analysis pane, see Figure 5. Given a node
and a set of cases, this pane generates an analysis report with information about how well the predictions of the network
match the cases.

Figure 5: Data Accuracy pane.

This pane consists of four elements, a drop down box at the top to select what node to analyze, an ROC curve, an
analysis report and a table showing the cases.

246 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Analysis Report

The analysis report list the number of cases used for analysis (only cases without observations of the actual node is
ignored). A confusion matrix is generated showing how well the observed states match the predicted. For prediction
we can use either of the following options:

1. random state with the highest belief to be the predicted state*.

2. specific state with a belief greater than or equal to the ROC cutoff threshold.

• (if a node has two or more states that qualify to be the predicted state, one of them is randomly selected as the
predicted state)

The button Calculate Matrix (using max. belief) makes a report where prediction is based on (1). Selecting a specific
state and threshold for the ROC curve and clicking the button Calculate Matrix makes a report where prediction is
based on (2).

The report also contains a number of distance measures, the average euclidian distance and Kulbach-Leibler diver-
gence. The distance measures are from the true distribution x inferred from the case data e with respect to the selected
node X, and the distribution y resulting from propagating eX.

The Euclidian distance is computed as:

𝑑𝑖𝑠𝑡𝑄(𝑥, 𝑦) =
∑︁
𝑖

(𝑥𝑖 − 𝑦𝑖)
2

The Kulbach-Leibler divergence is computed as:

𝑑𝑖𝑠𝑡𝐾(𝑥, 𝑦) =
∑︁
𝑖

(𝑙𝑜𝑔2𝑥𝑖 − 𝑙𝑜𝑔2𝑦𝑖)
2

The reported distance measure is averaged over all cases where X has been observed.

ROC Curve

The ROC curve lets you inspect the performance of a given variable as a classifier for the data set. X-axis is the
false positive rate, and the Y-axis is the true positive rate. The ROC curve is based on the performance for predicting
specific states. The area under the can be used as a measure for the “goodness” of the network as a classifier for the
given variable. The button Calculate Matrix generates a report based on the selected curve and ROC cutoff threshold
as described above in Analysis Report. The threshold can be specified by moving the threshold slider left and right.
The current threshold is also signified by a point on the curve, signifying the expected performance with regards to the
ratio between true and false predictions.

Case table

The table shows the cases used for analysis. The node selected for analysis will always be located in the second last
column of the table. The last column in the table report the probability of the node being in the state observed in the
case, given the case without information about the state of the node itself. Cases are colored green for a match, red for
no match and blue if ignored and orange if unable to make a prediction. A match is when the predicted state for the
node is the same state observed in the case.

© Copyright 2020, HUGIN EXPERT A/S 247

HUGIN Graphical User Interface Documentation, Release 8.9

Case Beliefs pane

Clicking on the “Cases/Beliefs” tab will bring forward the cases pane, see Figure 6. The case pane offers the option
of selecting a node and one of it’s states and displaying the beliefs for that state in each case, highlighted by a color.

Figure 6: Cases - Beliefs pane

This pane consists of six elements, a drop down box at the top to select what node to analyse, a dropdown box to
select one of the node’s states, a check box (Remove evidence), the color threshold spinner, a refresh button and a
table showing the cases.

By selecting a node and one of its states, the case table displays the beliefs for that node in each case for which no
evidence is entered. The information for the selected node will always be displayed in the first column after the “Case
no.” column (second column).

By checking the Remove evidence check box and pressing the refresh button, beliefs are retracted and displayed for
cases where evidence was entered in the node under analysis

The color threshold spinner offers the option of selecting the belief values to be colored (the values higher than the
selected are colored). The tone of the color indicates how high the value is (the darker the color the higher the value
is). The coloring ability together with the ability to sort the column makes it easier to notice the values desired.

248 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

To sort the column click, once on it’s header for ascending order or twice for descending. It is possible to save one
or more cases to a file so they can be used in another wizard (f.ex Parameter Sensitivity (page 317)). After selecting
one or more cases right click on the mouse and select “Save Case” for saving one case, or “Save Selected Cases” for
saving many cases. (see Figure 7).

Figure 7: Cases - Beliefs pane “save selected cases”

4.5.2 Learning Wizard

To get assistance in the process of learning a Bayesian-network model from data, the Learning Wizard can be quite
useful. The Learning Wizard can be invoked from the “Wizards” item of the menu bar of the Main Window (page 174).

The Learning Wizard read data from a plain text file, provides a data matrix (page 411) for editing and preprocessing of
the data (page 390) in different ways (e.g., variable exclusion, value replacements, and discretization). The wizard also
enables you to provide any structural or distributional domain knowledge that you might have, to resolve any structural
uncertainties resulting from the NPC learning algorithm (page 231), to investigate the strengths of the dependences
found in the data, and to provide prior knowledge about the conditional probability distributions.

For more detailed information on the Learning Wizard, please consult the online help pages provided with the Learning
Wizard.

© Copyright 2020, HUGIN EXPERT A/S 249

HUGIN Graphical User Interface Documentation, Release 8.9

4.5.3 Adaptation Wizard

The Adaptation Wizard is a tool for performing batch adaptation (page 228) on a network using any number of case
and data files (page 85). The Adaptation Wizard can be activated by selecting “Adaptation Wizard” in the Wizards
Menu. Note that the wizard is only available in run mode, and for flat networks with discrete chance nodes.

Step 1: Select data sources and configure tables

On the Data pane a set of case and/or data files can be added. The data sources will be used for adaptation in the order
that they are added. The Data pane is displayed in figure 1.

250 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Selecting data sources.

On the Experience and Fading pane, experience (page 216) and fading tables (page 217) may be configured for each
node. The experience count and fading factors are configured in these tables. Adaptation will only be performed for
conditional distributions of discrete chance nodes corresponding to parent configurations with a positive experience
count.

© Copyright 2020, HUGIN EXPERT A/S 251

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Configuring experience- and fading tables.

When the data sources, experience tables and fading tables have been configured, press the ‘next’ button.

252 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Step 2: Review configuration

The dialog (figure 3) will let you review the configuration of the wizard. The recording options configures any infor-
mation that the wizard should record and plot during adaptation. The dialog also displays a list with the nodes that
will be subject to adaptation. When you are done press the ‘next’ button.

Figure 3: Reviewing configuration, selection of information to be recorded.

© Copyright 2020, HUGIN EXPERT A/S 253

HUGIN Graphical User Interface Documentation, Release 8.9

Step 3: Perform adaptation

Figure 4 + 5 show the final dialog of the adaptation wizard. The batch adaptation process can be controlled using the
buttons. Adaptation is started by pressing the button ‘Adapt’, and may be paused with ‘Break’. The dialog may have
a number of panes (Experience Counts, figure 4; Marginals, figure 5) depending on the configuration specified for the
recording options. In both panes the X-axis represent the cases, and the Y-axis represent experience count or posterior
marginals.

Figure 4: Experience counts.

254 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

From the Experience Counts pane (figure 4), it is possible to inspect the development of the experience counts for a
node. The node can be selected from the dropdown list, and the exact configuration can be selected by clicking in
the ‘Experience’ checkboxes. To make it easier to distinguish the different configurations, each is plotted in distinct
colors.

Figure 5: Posterior marginals.

From the Posterior Marginals pane (figure 5), the development of the posterior marginals of a node may be inspected.
The posterior marginals for the exact states to plot can be selected by clicking in the checkboxes next to the states.

© Copyright 2020, HUGIN EXPERT A/S 255

HUGIN Graphical User Interface Documentation, Release 8.9

The logged data can be saved to file by clicking on the Save Log button.

4.5.4 Expression Builder Wizard

The Expression Builder Wizard (Figure 1) gathers many functions related to adding expressions (page 149) on a Node
Table (page 225). It consists of the Options panel (page 257), The Expression Builder Panel (page 259) and the Table
Panel. The main purpose of this wizard is to make it easier to build an expression by assisting the user in selecting
the correct type of expression the current node supports, selecting the correct type of parent nodes to be used in an
expression and dividing the whole process into steps that allows him to concentrate on building one simple expression
at a time without losing the overview of the complete expression.

Figure 1. Expression Builder Wizard

To build an expression, select one of the felts in the expression table where it shows “Undefined” (Figure 1). The
Expression Builder Panel (Figure 1a) that is relevant for the type of the current node is now visible. Select the
desired function category and then a function from the Function Name combo box to view the appropriate argument
fields. Type expressions in the argument fields or press the “f(x)” button next to them to build an expression for the
corresponding field. To insert a parent, right click and select from the list that appears.

256 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1a. The Expression Builder Panel is displayed for the node “Tuberculosis or Cancer”.

After building the expression press the “Apply” button and then the “Show as Table” button to confirm that the expres-
sion is built correctly. For more information about building an expression, see Expression Builder Panel (page 259).

Options Panel

The Option Panel (Figure 2) offers functionalities that are also available in the Node Table Frame menu.

© Copyright 2020, HUGIN EXPERT A/S 257

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2. The Options Panel.

The Add/Remove model node combo boxes as implied, allows the user to add or remove parent nodes to the expression
table .

Figure 2a. Selecting “Has tuberculosis”.

Figure 2b. The table after adding a model node.

Figures 2a and 2b show how the Node table looks like after adding the parent node “Has tuberculosis” on the expression
table model. This allows the specification of two different expressions, one for each state of the added parent node.
To remove the node from the model, select it in the “Remove model node” combo box. The view combo box supports
three different views of the values in the node table.

• Normal Mode: Only digits are displayed in every cpt index.

• Bar Mode: Both digits and a bar representing the value are displayed.

• Pure Bar Mode: Only a bar representing the value is displayed.

258 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Expression Builder Panel

The Expression Builder Panel is where the actual building of the expressions takes place after selecting a cell in the
expression table. It guides the user through the construction of Expressions, which are the cornerstones of the Table
Generator, using a series of steps. The current step is displayed on the top left corner. In the example shown in Figure
3 the current step is 1 (Function 1).

Figure 3: The Expression Builder Panel showing an if - then - else expression

The Expression Builder Panel assists the user in building expressions by providing a simple user interface for selecting
a function or an operator and specifying its arguments.

The combo boxes at the top of the panel (“Function category” and “Function Name”), show the functions available
(the actual set of functions depends on the type of the node associated with the current node table). Selecting a
“Function Category” populates the “Function Name” combo box with the corresponding functions allowing the user
to select. Figure 3a shows the function categories associated with a “Numbered” node. The functions are organized
in a number of categories to make it faster to find a particular function.

© Copyright 2020, HUGIN EXPERT A/S 259

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3a. Selecting Arithmetic Operators in the “Function Category” combo box will allow the selection of arith-
metic operators in the “Function Name” combo box.

The arguments panel (Figure 3b) is where the arguments of the expression can be specified. Each argument is itself an
expression and can therefore be built in the same way as the current expression. Pressing the “f(x)” button next to the
argument text field, will start “step 2” allowing the user to build an expression for that argument.

Figure 3b. The arguments panel. Selecting the parent node “Has tuberculosis” of type “Labelled”, to insert in the if
argument field.

The use of a parent node (page 196) in an expression is possible by using its unique name. Figure 3b shows how to
insert a parent node in an expression. By right clicking on an argument field a popup appears showing a list of the
parent nodes. Pointing on a node displays its type (page 201), to help the user decide if it can be used in the current
expression, because not all types can be used on all expressions. A short description of the currently editing expression
is displayed under the local expression field (Figure 3) and among other things it describes what type of nodes can be
used. When selecting a parent node from the list it is inserted into the argument field. Only discrete chance nodes and
decision nodes can appear in expressions.

When editing in the argument fields, the changes made are also shown in the “Local expression” field and the colored
field at the bottom. These fields display the expressions in their proper form replacing arguments that are not yet
specified with the “?” mark.

260 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3c. The local expression represents the current editing expression in the arguments panel and the colored field
at the bottom shows the global expression.

The “Current expression” represents the sub expression that is being edited in the current step and the colored field
displays the whole expression with the currently editing expression highlighted to help the user keep a perspective of
the process. The “plus” button next to the colored field, initializes the “expression viewer” that allows the user to view
a very long expression that might not be possible to display in the standard text field.

Figure 3c shows that we are currently in step two (Function 2. Upper left corner) and we are building an if - then - else
expression with arguments T, 1 and 0. The “Current expression” shows the written form of the expression (if (T, 1, 0)
). The colored field shows that the current expression is used as the second argument in an if - then - else expression,
with the node “T” as the first argument and the last argument not specified yet.

The expression builder can be switched to edit mode by pressing the “Edit” button allowing the user to manually type
in the “Current expression” field, just like it can be done in the node table frame (page 62). The insertion of a parent
node is done in the same way as described above.

It is possible to return to build mode again by pressing again the same button (now displaying “Build”). If the ex-
pression typed in edit mode (local expression field) can be parsed correctly, the appropriate arguments panel will be
displayed and the argument fields will be populated.

When pressing the “Back” button the Expression Builder returns to the previous step if there is one or to its initial
state, ignoring eventual changes.

The “Apply” button inserts the expression in the expression table without parcing for errors. The “Ok” button closes
the current arguments panel, and returns the expression created to the target arguments field of the previous step or to
the expression table if currently in step 1. After inserting the expression in the expression table press the “Show
As Table” button (Options Panel) to parse for errors.

© Copyright 2020, HUGIN EXPERT A/S 261

HUGIN Graphical User Interface Documentation, Release 8.9

4.5.5 Code Wizard

The Code Wizard is activated by selecting from the menu Wizards -> Code Wizard.

Figure 1: The Code Wizard

The Code Wizard may be usefull for programmers using any of the HUGIN APIs for application development. In
some scenarios loading a HUGIN model from a file is impractical and embedding the model in code may the only
solution. The Wizard generates a code snippet for constructing a runtime model.

The code produced has the following properties:

• Constructs a DOMAIN (For OOBNs this means the DOMAIN resulting from unfolding the OOBN model)

• DOMAIN is triangulated using the triangulation available at code generation time

• No error checking or error handling

262 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.5.6 EM Learning Wizard

To get assistance in the process of learning the CPT’s of a Bayesian network from data, the EM Learning Wizard
can be quite useful. The EM Learning Wizard can be invoked from the “Wizards” item of the menu bar of the Main
Window (page 174).

Please note that the EM Learning Wizard is intended in situations where a network structure is already available.
If a network structure is not available, one should consider using the complete Learning Wizard (page 249), which
provides a superset of the functionalities provided by the EM Learning Wizard.

The EM Learning Wizard read data from a plain text file, provides a data matrix (page 249) for editing and prepro-
cessing of the data (page 390) in different ways (e.g., variable exclusion, value replacements, and discretization). The
wizard also enables you to provide prior knowledge about the conditional probability distributions and densities.

For more detailed information on the EM Learning Wizard, please consult the online help pages provided with the EM
Learning Wizard.

4.5.7 Hidden Node Analyzer

The Hidden Node Analyzer is a wizard for determining the best number of states of a (hidden) discrete chance node
in a Bayesian network from a dataset. The Hidden Node Analyzer has three steps:

• loading a data file

• selecting the hidden node and setting the parameters for identification of the number of states of the hidden node

• the analysis

Each step is described in the following sections.

Load Data File

To perform any analysis the wizard will first need a set of cases. Cases can be imported by loading a HUGIN data file
or connecting to a database service and import. Click on button “Data Source” to import data.

After importing a set of cases, the Data Source pane will display a table with the imported cases, see Figure 1. To
discard all imported cases click on the button “Clear Data”.

© Copyright 2020, HUGIN EXPERT A/S 263

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Data Source pane. A set of cases has been imported.

Setting Parameters

The Hidden Node Analyzer can be used to identify the number of states of a hidden node. A node is hidden if no case
in the dataset contains an observation on the node.

To identify the number of states of a hidden node, the user should specify the hidden node, the minimum number of
states, the maximum number of states, and whether the conditional probability table (CPT) of the hidden node should
be randomized (default option) as illustrated in Figure 2.

264 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Setup pane.

The Hidden Node Analyzer supports discrete chance nodes only and only if there are atleast one non-boolean node.

Analysis

The Hidden Node Analyzer iterates over the possible state space sizes of the hidden from minimum to maximum as
selected by the user. In each iteration an EM learning operation is performed from the initial network, i.e., the state of
the network when the wizard was opened. The conditional probability table of the hidden node is randomized, if the
user has selected this option (default). For each iteration the AIC, BIC and log-likelihood are displayed to the user.

Notice that to perform the analysis, the network must be compiled and one EM learning operation is performed for
each state considered. This may result in long running times.

Figure 3 shows the result of running the Hidden Node Analyzer on an example network and dataset.

© Copyright 2020, HUGIN EXPERT A/S 265

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: Run pane.

For each possible state space size of the hidden node, the Hidden Node Analyzer reports the value of each optimisation
score. For the selected optimisation score, the highest scoring state size space is shown in the last line. This is a help
for the user to identify the number of states producing the highest score.

The user can choose to apply the settings associated with the highest scoring state space size. This will update the
underlying model including setting the number of states of the hidden node and updating the conditional probability
tables et cetera of the nodes in the network from the result of the EM learning iteration producing the highest score.
Only conditional probability tables for nodes with experience tables are updated.

4.5.8 Feature Selection Analyzer

Feature selection is an important task in the development of Bayesian networks for, for instance, classification. The
HUGIN Graphical User Interface has support for feature selection through the Feature Selection Analyzer. The Feature
Selection Analyzer has three steps:

• Open a network in the network pane

• loading a data file for feature selection

• selection of the target variable (e.g., the classification variable) feature selection

266 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• the feature selection

Each step is described in the following sections.

Load Data File

To perform any analysis the wizard will first need a set of cases. Cases can be imported by loading a HUGIN data file
or connecting to a database service and import. Click on button “Data Source” to import data. The column names in
the data file must correspond to the names of the nodes in the model. Columns not matching the nodes in the model
will be filtered out.

After importing a set of cases, the Data Source pane will display a table with the imported cases, see Figure 1. To
discard all imported cases click on the button “Clear Data”.

Figure 1: Data Source pane. A set of cases has been imported.

© Copyright 2020, HUGIN EXPERT A/S 267

HUGIN Graphical User Interface Documentation, Release 8.9

Select Target Node

Feature selection is performed relative to a target node. The target node should be selected in this pane.

Figure 2: Setup Pane.

Feature selection is supported for discrete chance nodes only, i.e., the target node and the feature nodes should all be
discrete chance nodes.

268 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Feature Selection

Feature selection is based on computing the p-value of the test for marginal independence between the selected target
node and each possible feature node. Figure 3 shows the result of feature selection on an example network and dataset.

Figure 3: Run Pane.

To support feature selection, the p-value of the test for marginal independence is computed. The p-value is the tail
probability under the independence assumption. The higher the value the more likely the nodes are to be independent.
(p is the probability of obtaining a Q value as large or larger than the Q value computed from the data under the
null-hypothesis - which is the independence assumption. The Q value is a measure of the distance between the joint
distribution of the feature and the target and the product of the marginal distributions of the feature and the target).

Thus, for a small value (for instance, less than a significance level alpha), the null-hypothesis that the nodes are not
related is rejected and, hence, we assume the feature to be relevant for the target node.

If the user selects a set of nodes in the list, then these nodes will remain selected when the wizard is closed. This is
useful for selecting the highest scoring features.

© Copyright 2020, HUGIN EXPERT A/S 269

HUGIN Graphical User Interface Documentation, Release 8.9

4.5.9 Parameter Sensitivity Wizard

The Parameter Sensitivity Wizard is a tool that provides support for analysis based on individual parameters. The
current version allows the user to constrain parameters (Constraints panel (page 133)) and to perform “Parameter
Sensitivity Analysis” (page 317) and Two Way Parameter Sensitivity Analysis (page 322).

The Parameter Sensitivity Wizard can be activated through the menu bar (Wizards - Parameter Sensitivity Wizard).

Note that the wizard is only available in run mode, and for flat networks with discrete nodes.

4.6 Methods Of Analysis

4.6.1 Methods of Analysis

The HUGIN Graphical User interface supports a number of different methods of analysis on a model. These methods
include d-separation analysis, data conflict analysis, sensitivity to evidence analysis, and value of information analysis.
The Analysis Menu in figure 1 can be found under analysis in the Network Menu (page 173).

• d-separation (page 270)

• Show requisite parents for decision (page 273)

• Show requisite ancestors for decision (page 273)

• Data Conflict (page 274)

• Evidence Sensitivity (page 281)

• Utility Sensitivity (page 291)

• Value of Information (page 294)

• CVDT Function (page 302)

• Convolution (page 303)

• XOI Loss Model (page 305)

• Joint Configurations (page 308)

• Correlation Analysis (page 311)

• Distance Analysis (page 314)

• Parameter Sensitivity (page 317)

4.6.2 D-Separation (Operation)

Determining the d-relations (page 271) in a network can be done in Hugin when in run-mode. This is done using the
operations available in the D-Separation submenu of the Network menu (page 173).

When a d-separation operation has been performed, the visual representation of the network changes to show the result
of the operation. A node can be represented in five different ways depending on its role in the operation:

The source node. That is, the node whose relation to all the target nodes will be deter-
mined.

270 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

A connected target node. That is, the source node is d-connected to this node.

A separated target node. That is, the source node is d-separated from this node.

An instantiated node. The d-relation to the source node is not determined.

An “anonymous” node. That is, a node which is none of the above.

• Show D-Separation

This operation will display all nodes d-seperated from the currently selected node.

• Show Markov Blanket

This operation will display the Markov Blanket (page 120). for the currently selected node.

4.6.3 D-Separation (Theory)

The rules of d-separation, due to Pearl (1988) (page 519), can be used to determine the dependences and independences
among the variables of a Bayesian network. This is very useful for e.g. (structural) model verification (page 330) and
explanation. It is possible to perform d-separation (page 270) in HUGIN when the network is in run-mode.

To use the rules of d-separation, one must be familiar with the three fundamental kinds of connections

• X→ Y→ Z (serial connection): Information may be transmitted through the connection unless the state of Y
is known. Example: If we observe the rain falling (Y), any knowledge that there is a dark cloud (X) is irrelevant
to any hypothesis (or belief) about wet lawn (Z). On the other hand, if we don’t known whether it rains or not,
observing a dark cloud will increase our belief about rain, which in turn will increase our belief about wet lawn.

• X← Y→ Z (diverging connection): Information may be transmitted through the connection unless the state of
Y is known. Example: If we observe the rain falling (Y) and then that the lawn is wet (X), the added knowledge
that the lawn is wet (X) will tell us nothing more about the type of weather report to expect from the radio (Z)
than the information gained from observing the rain alone. On the other hand, if we don’t known whether it
rains or not, a rain report in the radio will increase our belief that it is raining, which in turn will increase our
belief about wet lawn.

• X→ Y← Z (converging connection): Information may be transmitted through the connection only if informa-
tion about the state of Y or one of its descendants is available. Example: If we know the lawn is wet (Y) and
that the sprinkler is on (X), then this will effect our belief about whether it has been raining or not (Z), as the
wet lawn leads us to believe that this was because of the sprinkler rather than the rain. On the other hand, if
we have no knowledge about the state of the lawn, then observing that it rains will not affect our belief about
whether the sprinkler has been on or not.

Two variables X and Z are d-separated if for all paths between X and Z there is an intermediate variable Y such that
either

• the connection is serial or diverging and Y is instantiated (i.e., its value is known), or

• the connection is converging and neither Y nor any of its descendants have received evidence.

© Copyright 2020, HUGIN EXPERT A/S 271

HUGIN Graphical User Interface Documentation, Release 8.9

If X and Z are not d-separated, they are d-connected. Note that dependence and independence depends on what you
know (and do not know). That is, the evidence available plays a significant role when determining the dependence and
independence relations.

Let us consider the DAG in Figure 1. Using the above rules, we find e.g. that

• C and L are d-separated, as each path between C and L includes at least one converging connection.

• C and L are d-connected given K (i.e., the value of K is known), as there are now several paths between C and L
where the converging connections contain an instantiated variable (e.g., C→ G→ K← H→ L) or a descendant
(K) of the node in the converging connection has been instantiated (e.g., C← A→ D← B→ E→ H→ L).

Figure 1: A sample network.

As mentioned in Introduction to Bayesian Networks (page 19), an alternative to using the d-separation rules is to use
an equivalent criterion due to Lauritzen et al. (1990): (page 519): Let A, B, and C be disjoint sets of variables. Then

• identify the smallest sub-graph that contains A B C and their ancestors,

• add undirected links between nodes having a common child, and

• drop directions on all directed links.

Now, if every path from a variable in A to a variable in B contains a variable in C, then A is conditionally independent
of B given C.

272 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.6.4 Requisite Parents

Not all available observations matter when a decision must be made. Intuitively, a parent of a decision node is said to
be requisite if the value of the parent may affect the optimal choice of the decision.

The performance of inference in a LIMID can be improved, if the network is simplified by removing the nonrequisite
parents of all decision nodes.

Lauritzen and Nilsson (2001) (page 519) present an algorithm for removing the nonrequisite parents of the decision
nodes in a LIMID. The result of this algorithm is a LIMID, where no parent of a decision node is nonrequisite. This
network is known as the minimal reduction of the LIMID.

Our definition of requisiteness is slightly different than the one given by Lauritzen and Nilsson: We define a parent
of a decision node to be requisite if and only if it is also a parent of the decision node in the minimal reduction
of the LIMID.

Inspect the requisite parents of a decision node

Select a decision node. Click Network -> Analysis -> Show requisite parents for decision.

Requisite parents will be marked with a green V (see Figure 1) and non-requisite parents will be marked with a red X
(see Figure 2).

Figure 1: Requisite parents are marked with a green V.

Figure 2: Non-requisite parents are marked with a red X.

Note: If the model is a class, this function is only available in run-mode. If the model is a flat net, the function is
available in both edit-mode and run-mode.

4.6.5 Requisite Ancestors

Inspecting requisite ancestors for a decision node may be useful for solving a network with decisions and utlity
functions as a traditional influence diagram where all observations and all decisions of the past must be remembered.

Not all available observations matter when a decision must be made. In order to get the optimal solution of an
influence diagram, relevant past observations and decisions must be added as parents of each decision node in the
LIMID network.

Ancestors of a decision node is said to be requisite if the value of the ancestor may affect the optimal choice of the
decision.

© Copyright 2020, HUGIN EXPERT A/S 273

HUGIN Graphical User Interface Documentation, Release 8.9

Inspect the requisite ancestors of a decision node

Select a decision node. Click Network -> Analysis -> Show requisite ancestors for decision.

Requisite ancestors will be marked with a green V (see Figure 1).

Figure 1: Requisite ancestors are marked with a green V.

Note: If the model is a class, this function is only available in run-mode. If the model is a flat net, the function is
available in both edit-mode and run-mode.

4.6.6 Data Conflict Analysis

Conflict analysis is the activity of detecting, tracing, and explaining possible conflicts among observations of variable
values (i.e., evidence or data). Inconsistencies among observations are easily detected (P(evidence) = 0), but also
flawed findings should be detected and traced. For example, in a diagnostic situation a single flawed test result may
take the investigation in a completely wrong direction.

Data conflicts are indicated in the right-hand side of the status bar of the Main Window (page 174) and in the Junction
Tree Window (page 237) (see Figures 1 and 2). Please note that a positive conflict measure indicates negatively
correlated observations (i.e., a possible conflict) and that a negative conflict measure indicates positively correlated
observations.

Figure 1: The conflict measure computed for the entered evidence is shown in the right-hand side of the status bar of
the Main Window.

274 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The overall conflict measure computed for the entered evidence is shown in the root clique of the junction
tree and in the right-hand side of the status bar of the Junction Tree Window. Local conflicts pertaining to evidence
entered in a sub-trees are indicated in the root cliques of these sub-trees.

To understand what conflict analysis is and how it can be used, there are several issues of interest:

• Definition of Data Conflict (page 276): How do we define data conflict?

• Conflict Measure (page 276): How do we define an appropriate measure of data conflict?

• Conflict Resolution (page 278): How do we distinguish between a conflict and a rare case?

• Tracing Conflicts (page 279): How do we identify the pieces of evidence that contribute to a data conflict?

© Copyright 2020, HUGIN EXPERT A/S 275

HUGIN Graphical User Interface Documentation, Release 8.9

Definition of Data Conflict

We define two sets of observations e1 and e2 to be in a possible conflict with one another if they are negatively
correlated.

For positively correlated findings we expect that P(e1`|e:sub:`2) > P(e1) and vice versa (i.e., observing e2 makes it more
likely to also observe e1 (and vice versa)). In other words, we expect that

𝑃 (𝑒1, 𝑒2) > 𝑃 (𝑒1)𝑃 (𝑒2)

if e1 and e2 are positively correlated,

𝑃 (𝑒1, 𝑒2) < 𝑃 (𝑒1)𝑃 (𝑒2)

if e1 and e2 are negatively correlated, and

𝑃 (𝑒1, 𝑒2) = 𝑃 (𝑒1)𝑃 (𝑒2)

if e1 and e2 are independent.

Conflict Measure

Therefore, given a set of observations (evidence), e = {e1,. . . ,en}, we define the conflict measure for e as

𝑐𝑜𝑛𝑓(𝑒) = 𝑙𝑜𝑔

∏︀𝑛
𝑖=1 𝑃 (𝑒𝑖)

𝑃 (𝑒)

If conf(e) is positive, e1,. . . ,en are negatively correlated, indicating a possible conflict among these pieces of evidence.
(The choice of base for the log function is immaterial.)

Notice, that if conf(e) is negative (i.e., no apparent conflict among e1,. . . ,en), then this gives you no guarantee that all
of e1,. . . ,en are positively correlated. It may well happen that there is a local conflict (i.e., that conf(e’) > 0 for a proper
subset e’ of e) although conf(e) < 0.

As an example, consider the junction tree in Figure 3, where there are five pieces of evidence (marked by the red
nodes). The overall conflict measure is -0.54, indicating no conflict. This measure is obtained from the root clique.

276 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: The overall conflict measure for the five pieces of evidence entered (marked by the red nodes) is -0.54,
indicating no conflict. Note that the local conflict measure for the two pieces of evidence on Education and Husb_occup
(“Husband Occupation”) is less than the overall conflict.

The measure indicated in each clique is the conflict measure pertaining to the evidence entered in the sub-tree with
that clique as root. For example, the conflict measure of the clique containing nodes “Education” and “Husb_educ” is
-0.6 and pertains to the two pieces of evidence associated with “Education” and “Husb_occup”.

To compute the local conflict measure for the three pieces of evidence associated with “Age”, “Religion” and “Con-
traceptive” one can select, for example, the clique { “Education”, “Religion”, “Contraceptive” } as root (see Figure
4). (For details on selecting a root of a junction tree, see the Junction Tree section (page 237).) Now, it turns out that
there is a slight conflict among these three pieces of evidence (conflict measure is 0.39).

© Copyright 2020, HUGIN EXPERT A/S 277

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: There is a slight conflict among the values observed for the three variables “Age”, “Religion” and “Contra-
ceptive” (conflict measure is 0.39), although there is no overall conflict.

Conflict Resolution

There are situations in which a positive conflict measure is computed, where there is no real conflict. These include:

• Rare case: Typical data from a very rare case may indicate a possible conflict. If conf(e1,. . . ,en) > 0 and there is
a hypothesis H=h such that conf(e1,. . . ,en,h) < 0, then h explains away the conflict. That is, if H=h is the correct
hypothesis (e.g., a diagnosis) in the current situation, then there is no conflict.

• Missing observation: Basically the same situation, where conf(e1,. . . ,en) > 0 but conf(e1,. . . ,en,I=i) < 0, where
I=i is a missing piece of information. That is, there is a local conflict among e1,. . . ,en, but the observation I=i
explains the conflict.

By activating the button with the symbol, one can obtain a list of possible instantiations of currently uninstantiated
variables that can eliminate the current conflict. An example of the dialog box that appears when this button is activated
is shown in Figure 5.

278 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 5: Conflict resolutions dialog box. The box contains a list of possible instantiations of currently uninstantiated
variables that can eliminate the current conflict.

The dialog box contains a list of possible instantiations in the form

:: <CM>:<variable>=<value>

where <CM> is the new conflict measure obtained if <variable> is instantiated to <value>. Only instantiations (if any)
with a resulting conflict measure less than or equal to 0 get displayed.

The Instantiate button enters the currently selected instantiation (if any) as evidence.

Tracing Conflicts

Whenever a positive conflict has been observed that cannot be explained as a rare case, it is important to pinpoint the
piece (or pieces) of evidence that is in conflict with the majority of the pieces of evidence.

Basically, this involves computation of conflict measures for subsets of the evidence. As mentioned and illustrated
above, the junction tree (page 237) is useful for this purpose. As an example, consider the junction tree in Figure 6,
where four pieces of evidence have been entered (marked by the red nodes).

© Copyright 2020, HUGIN EXPERT A/S 279

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 6: A slight conflict among the pieces of evidence entered (red nodes).

The conflict measure of 0.21 indicates a slight conflict among the these pieces of evidence. To trace the source of the
conflict, we can investigate local conflict measures. The junction tree shown above does not reveal any definitive clues
as to which piece could be the one causing the conflict. It does show, however, that the local conflict measure is zero
for the sub-tree rooted at clique { T, E, L }, indicating that the observations on X and A are not in conflict with one
another.

To investigate further, we may select another clique as root of the junction tree, so as to compute some different local
conflict measures. If we select clique { T, E, L } as the root of the tree (see Figure 7), we find that there is a slight
local conflict among the observed value for D and the observed value for S.

280 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 7: A slight local conflict among the observed values for D and S.

4.6.7 Evidence Sensitivity Analysis

What is Evidence Sensitivity Analysis?

Evidence sensitivity analysis (SE analysis) is the analysis of how sensitive the results of a belief update (propagation
of evidence) is to variations in the set of evidence (observations, likelihood, etc.).

Consider the situation where a decision maker has to make a decision based on the probability distribution of a
hypothesis variable. It could, for instance, be a physician deciding on a treatment of a patient given the probability
distribution of a disease variable. Prior to deciding on a treatment the physician may have the option to investigate
the impact of the collected information on the posterior distribution of the hypothesis variable. Given a set of findings
and a hypothesis, which sets of findings are in favor, against, or irrelevant for the hypothesis, which sets of findings
discriminate the hypothesis from an alternative hypothesis, what if a variable had been observed to a different value
than the one observed, etc. These questions can be answered by SE analysis.

Given a Bayesian network model and a hypothesis variable, the task is to determine how sensitive the belief in the
hypothesis variable is to variations in the evidence. We consider myopic hypothesis driven SE analysis on discrete
random variables.

Evidence sensitivity analysis is available for discrete chance nodes only if there are no unpropagated evidence. The
functionality is enabled when a discrete chance node is selected or when pressing the right mouse button on a discrete
chance node in the Node List Pane (page 227) (and evidence has been entered and propagated).

© Copyright 2020, HUGIN EXPERT A/S 281

HUGIN Graphical User Interface Documentation, Release 8.9

Distance Measures

The main purpose of hypothesis driven SE analysis is to investigate how changes in the set of evidence impact the
probability of a hypothesis. In order to perform this investigation two distance measures are required. Each distance
measure will provide a numerical value specifying the distance between either two probabilities or two probability
distributions.

Let X be a hypothesis variable with state space x1,. . . ,xn and let 𝜀 = { 𝜀1, . . . , 𝜀𝑚} be a set of evidence (findings). We
let 𝜀𝑌 in 𝜀 denote the finding on variable Y in X(𝜀).

The distance d(p,q) between two probabilities p and q is defined, for p different from zero, as:

𝑑(𝑝, 𝑞) = |𝑞
𝑝
− 1|

This measure is, for instance, useful for measuring the distance between the probability P(x| 𝜀) of hypothesis x given
evidence 𝜀 and the probability P(x| 𝜀{ 𝜀𝑖}) of hypothesis x given evidence 𝜀{ 𝜀𝑖}, i.e., the set of evidence where 𝜀𝑖 is
excluded from 𝜀.

A pair of probabilities p and q are said to be almost equal when their distance d(p,q) is below a predefined threshold
𝛿, i.e., d(p,q) < 𝛿.

The cost-of-omission c(P(X| 𝜀), P(X| 𝜀{ 𝜀𝑖})) of 𝜀𝑖 is defined as:

𝑐(𝑃 |𝑋|𝜀), 𝑃 (𝑋|𝜀 ∖ {𝜀𝑖}) =
∑︁

𝑥∈𝑑𝑜𝑚(𝑥)

𝑃 (𝑋|𝜀)𝑙𝑜𝑔(𝑃 (𝑥|𝜀)
𝑃 (𝑥|𝜀 ∖ {𝜀𝑖})

)

This formula is undefined for values P(x| 𝜀)=0 and P(x| 𝜀{ 𝜀𝑖})=0. For these two cases, we define cost-of-omission to be
0 and infinity, respectively. Notice the difference between the distance measure and the cost-of-omission measure. The
distance measure evaluates the distance between probability values whereas the cost-of-omission measure evaluates
the distance between two posterior probability distributions relative to omitting a certain finding 𝜀𝑖 from the evidence
𝜀. The cost-of-omission measure is a special case of the more general cross entropy distance (or Kullback-Leibler
distance) measure between a probability distribution P and an approximation P’ of P:

𝐻(𝑃, 𝑃 ′) =
∑︁

𝑥∈𝑑𝑜𝑚(𝑥)

𝑃 (𝑥)𝑙𝑜𝑔(
𝑃 (𝑥)

𝑃 ′(𝑥)
)

The cost-of-omission measure is, for instance, useful for measuring the distance between the posterior probability
distribution P(X| 𝜀) of hypothesis variable X given evidence 𝜀 and the posterior probability distribution P(X| 𝜀{𝜀𝑖}) of
hypothesis variable X given evidence 𝜀{𝜀𝑖}, i.e., the set of evidence where 𝜀𝑖 is excluded from 𝜀.

Min-Max

As part of performing a SE analysis we may be interested in knowing the minimum and maximum values of the
posterior belief in each possible state of the hypothesis variable given all possible observations on a given variable.

Using the dialog shown in Figure 1 we may for each information variable (page 289) determine the minimum, current,
and maximum value of the posterior probability of each state of the hypothesis variable. The minimum and maximum
values are determined by entering and propagating each state of the information variable. This analysis requires one
propagation for each state of each possible information variable.

282 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The entropy of the hypothesis variable B is H(B)=0.63.

Figure 1 shows the posterior probability distribution of Has bronchitis given the entire set of evidence, the entropy
H(Has bronchitis)=0.63 of Dyspnoea? as well as the minimum, current, and maximum values for the posterior prob-
ability of Dyspnoea equal to yes given variations over each selected information variable (i.e., Has bronchitis, Tuber-
culosis or cancer, etc).

Pressing the Table View button in the dialog shown in Figure 1 produces the table shown in Figure 2.

© Copyright 2020, HUGIN EXPERT A/S 283

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Table view of the results in Figure 1.

Impact

Investigation of the impact of different subsets of the evidence on each state of the hypothesis variable is a useful part
of SE analysis. Investigating the impact of different subsets of the evidence on states of the hypothesis may help to
determine subsets of the evidence acting in favor of or against each possible hypothesis.

The impact of a subset of the evidence on a state of the hypothesis variable is determined by computing the normalized
likelihood of the evidence given the hypothesis.

𝑁𝐿 =
𝑃 (𝜀′|𝑥)
𝑃 (𝜀′)

=
𝑃 (𝜀′, 𝑥)/𝑃 (𝑥)

𝑃 (𝜀′)
=

𝑃 (𝑥|𝜀′)𝑃 (𝜀′)/𝑃 (𝑥)

𝑃 (𝜀′′)
=

𝑃 (𝑥|𝜀′)
𝑃 (𝑥)

This analysis requires one propagation for each subset of the selected evidence.

Using the dialog shown in Figure 3 we may investigate the impact of all subsets of the selected evidence on each state
of the hypothesis variable.

284 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: The normalized likelihood (NL) of different subsets of the evidence for the selected state of the hypothesis
variable.

Figure 3 shows that the normalized likelihood (NL) of the hypothesis Has bronchitis = yes given on Smoker? is 1.33.
This suggests that evidence supports the hypothesis that the patient is suffering from bronchitis (since the normalized
likelihood is above one). The evidence on Dyspnoea? is in favor of the alternative hypothesis.

Discrimination

A central question considered by SE analysis is the question of how different subsets of the evidence discriminates
between competing hypotheses. The challenge is to compare the impact of subsets of the evidence on competing
hypotheses.

We consider the discrimination between two different hypotheses represented as states of two different variables. The
discrimination of a pair of competing hypotheses is based on the calculation of Bayes’ factor for all subsets of a
selected set of evidence.

𝐵 =
posterior odds ratio

prior odds ratio
=

𝑃 (𝑥|𝜀′)/𝑃 (𝑦|𝜀′)
𝑃 (𝑥)/𝑃 (𝑦)

=
𝑃 (𝜀′|𝑥)
𝑃 (𝜀′|𝑦)

=
𝐿(𝑥|𝜀′)
𝐿(𝑦|𝜀′)

This requires one propagation for each subset.

Using the dialog shown in Figure 4 we may investigate how each subsets of the selected evidence discriminates
between two competing hypotheses.

© Copyright 2020, HUGIN EXPERT A/S 285

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: Discrimination between the hypothesis Has bronchitis = true and the alternative hypothesis Has lung cancer
= true.

Figure 4 shows Bayes’ factor between the hypothesis Has bronchitis = true and the alternative hypothesis Has lung
cancer = true for each subset of the selected evidence. All subsets (except the empty set) support the alternative
hypothesis (i.e. that the patient is suffering from lung cancer)

What-If

In what-if SE analysis the type of question considered is the following. What if an observed discrete or continuous
random variable had been observed to a value different from the value actually observed. For an observed continuous
chance node we consider a limited number of possible values computed based on the mean and standard deviation of
the node. The number of values considered for a continuous node is specified by the user as Number of values. This
the number of values above and below the mean value, i.e., twice this number of values will be consider plus the mean
value.

We consider a hypothesis driven approach to what-if analysis. Hypothesis driven what-if analysis is performed by
computing the posterior distribution of the hypothesis variable for each possible state of the observed variable.

Using the dialog shown in Figure 5 we may investigate the consequences of changing the observed state of an evidence
variable.

286 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 5: The posterior distribution of the hypothesis variable Has bronchitis has a function of the observed state of
Smoker?.

Figure 5 shows how the posterior distribution of the hypothesis variable Has bronchitis changes as a function of the
observed state of Smoker?.

Findings

The impact of each finding on the probability of the hypothesis is determined by computing and comparing the prior
probability of the hypothesis, the posterior probability of the hypothesis given the entire set of evidence and the
posterior probability of the hypothesis given the entire set of evidence except the finding.

The notions of an important finding, a sufficient set of evidence, and a redudant finding are central to findings SE
analysis:

• A finding is important when the difference between the probability of the hypothesis given the entire set of
evidence except the finding and the probability of the hypothesis given the entire set of evidence is too large.

• A subset of evidence, e.g. the entire set of evidence except a certain finding, is sufficient when the probability of
the hypothesis given the subset of evidence is almost equal to the probability of the hypothesis given the entire
set of evidence.

• A finding is redundant when the probability of the hypothesis given the entire set of evidence except the finding
is almost equal to the probability of the hypothesis given the entire set of evidence.

The impact of each finding may be considered for each state or a certain state of the hypothese variable. Sufficiency
and importance thresholds are specified by the user.

© Copyright 2020, HUGIN EXPERT A/S 287

HUGIN Graphical User Interface Documentation, Release 8.9

Using the dialog shown in Figure 6 and 7 we may investigate the of a finding on the posterior distribution of the
hypothesis variable.

Figure 6: Findings

288 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 7: The impact of findings on B.

Figure 6 and 7 illustrates the impact of the finding on Smoker? on the hypothesis Has bronchitis = false (corresponding
to H in state false, i.e. h=false).

Information Variables

Min-max SE analysis on a hypothesis variable is performed relative to a set of information variables. The set of
information variables can be selected as indicated in Figure 8.

© Copyright 2020, HUGIN EXPERT A/S 289

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 8: Selecting the set of information variables.

Selecting information variables proceeds in the same way as selecting Target(s) of Instantiations in the d-Separation
pane.

4.6.8 Evidence Sensitivity Analysis (Decision)

Evidence sensitivity analysis (SE analysis) with respect to a decision node is the analysis of how sensitive the expected
utility of a decision node is to variations in the set of observed evidence (i.e., observations on chance nodes made prior
to the decision). The analysis aims to answer the questions such as, for instance, how does the expected utility of the
decision change as the value observed for a single chance node is changed keeping the remaining observed nodes
fixed?. The analysis is performed for each selected evidence node in turn. This can be useful for identifying the most
and least important observation.

Given an influence diagram model and a decision node, the task is to computed the expected utility of the decision
options for each possible value of each observed node. This is solved by iterating through the states of each observed
node and computing the expected utility given that state (and the remaining set of evidence).

Using the dialog shown in Figure 1 we determine for each selected evidence variable the minimum, current, and
maximum value of the expected utility of the decision.

290 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The sensitivity to evidence dialog for a decision node.

Figure 1 shows the maximum expected utility (MEU) of the Drill decision given the evidence is 22.86 where the
evidence is on Test (observed to yes) and Seismic (observed to open, which is an indication of some oil) in the upper
left corner. For each selected evidence node, the minimum and maximum MEU are illustrated using a green bar. This
shows how the MEU varies with the observed value for the selected node. The MEU as a function of the value of
Seismic is between -10 and 77.5. It is -10, if we change the observed value to di (i.e., diffuse reflection pattern, which
is an indication of almost no hope of oil) and 77.5, if we change the observed value to cl (i.e., closed reflection pattern,
which is an indication of a lot of oil). It is clear that changes to the observed value for Seismic produce the most
variation in the expected utility for the decision.

4.6.9 Utility Sensitivity Analysis

The utility sensitivity wizard performs n-way utility sensitivity analysis. Use the wizard to inspect the impact that
changes in utility- and discrete chance node parameters has on decision utilities.

Analysis is performed with respect to a single target decision node. A number of tests can be performed by varying
the parameters of a single parameter node (utility or discrete chance).

To launch the utility sensitivity wizard, switch to Run Mode (page 121) and select the target decision node. Then open
the network menu (page 173) -> analysis methods (page 270) and select Utility Sensitivity.

The utility sensitivity wizard can be seen in figure 1.

© Copyright 2020, HUGIN EXPERT A/S 291

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Utility sensitivity wizard window.

Initially the utility sensitivity wizard contains a blank sheet, to which a number of tests can be added. Add a test using
the controls at the top of the frame:

• Parameter - the node wich parameters we will modify

• Add - add a test using selected paramter node

• Remove - remove last test from sheet

• Clear - clear the entire sheet

Test Components

Each test added to the sheet contains a pair of tables side by side. The Target table reports the decision utilities for
the target decision node and also the overal expected utility given the updated parameters and policies. Each cell in
the Target table contains the expected utility if the given configuration was entered as evidence. The Parameter table
represents the utility table or CPT of the parameter node.

For each test, the Target table contains the results, and the Parameter table is used for configuring input to the test.

The basis for the computations in each test is the current table, policies and evidence entered in the network (at the
time the utility sensitivity wizard was launched). Computations for each test is performed following these steps:

1. The specified parameters (utility or CPT) replace original parameters of parameter node

292 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

2. A propagation is performed using the new parameter table

3. Policies are updated using Single Policy Update

4. Over all expected utility is computed (reported as EU under Target)

5. The decision utilities are computed (and polupated in Target table)

To re-compute decision utilities after modifying Parameter table values, click the Compute button (located in bottom
next to close button).

Figure 2 show the utility sensitivity analysis wizard with a number of tests. The Target tables show the impact of
changes in the Parameters.

Figure 2: Utility sensitivity wizard window, with a number of tests on the sheet.

© Copyright 2020, HUGIN EXPERT A/S 293

HUGIN Graphical User Interface Documentation, Release 8.9

4.6.10 Value of Information Analysis

Value of information analysis may be performed in both (limited memory) influence diagrams and Bayesian networks.
The approach to value of information analysis in (limited memory) influence diagrams is, however, slightly different
from the approach to value of information analysis in Bayesian networks. Thus, in the following two sections we
consider in turn value of information analysis in (limited memory) influence diagrams and Bayesian networks, respec-
tively. Each of the following two sections is self contained. This implies that each section may be read separately, but
it also implies that some overlap may be present.

Limited Memory Influence Diagrams

Consider the situation where a decision maker has to make a decision given a set of observations. It could, for instance,
be a physician deciding on a treatment of a patient given observations on symptoms and risk factors related to a specific
disease. The decision could, for instance, be whether or not to operate the patient immediately. Prior to making the
decision, the physician may have the option to gather additional information about the patient such as waiting for the
result of a test or asking further questions. Given a range of options, which option should the physician choose next?
That is, which of the given options will produce the most information? These questions can be answered by a value of
information analysis.

Given a (limited memory) influence diagram model, a decision variable, and observations on the informational parents
of the decision, the task is to identify the variable, which is most informative with respect to the decision variable.

We consider one step lookahead hypothesis driven value of information analysis on discrete random variables relative
to discrete decision variables. The functionality is enabled when a discrete decision node is selected or when pressing
the right mouse button on a discrete decision node in the Node List Pane (page 227).

Maximum Expected Utility

The main reason for acquiring additional information is to increase the maximum expected utility of the decision under
consideration. The selection of the variable to observe next (e.g. the question to ask next) is based on the principle
of maximizing expected utility. Expected utility is a measure of the usefulness of the decision options associated with
the decision variable.

Value of Information Analysis

The value of information is a core element of decision analysis. We perform decision analysis using limited memory
influence diagram representations of decision problems. The structure of an influence diagram specify a partial order
on observations relative to a partial order on decisions. Value of information analysis in limited memory influence
diagrams considers the impact of changing the partial order of observations relative to a decision. Assume D is the
next decision to be considered and let 𝜀 be the set of observations and decisions made up to decision D. Initially, the
basis for making decision D is the expected utility function EU(D| 𝜀) over the options encoded by D.

Assume Xi = x is observed prior to making decision D. The revised basis for making decision D is the now expected
utility function EU(D| 𝜀,x):

𝐸𝑈(𝐷|𝑋𝑖 = 𝑥, 𝜀)

Prior to observing the state of Xi the probability distribution of Xi is P(Xi | 𝜀). Thus, we can compute the expected
utility of the optimal decision at D after Xi is observed EUO(Xi, D| 𝜀) to be:

𝐸𝑈𝑂(𝑋𝑖, 𝐷|𝑒) =
∑︁
𝑋𝑖

𝑃 (𝑋𝑖|𝜀)max
𝐷

𝐸𝑈(𝐷|𝑋𝑖, 𝜀)

294 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

This number should be compared with the maximum expected utility of the optimal decision at D without the obser-
vation on Xi. The value VOI(Xi,D| 𝜀) of observing Xi before decision D is:

𝑉 𝑂𝐼(𝑋𝑖, 𝐷|𝜀) = 𝐸𝑈𝑂(𝑋𝑖|𝜀)max
𝐷

𝐸𝑈(𝐷|𝑋𝑖, 𝜀)

Performing Value of Information Analysis

Value of information analysis on a selected decision variable can be activated from either the Network Menu (page 173),
Node List Pane (page 227), or by clicking the right mouse button. Notice that the decision variable must be selected
in order to activate value of information analysis.

Value of information analysis is supported for discrete chance variables relative to discrete chance variables.

Figure 1 shows the value of information pane appearing after activating value of information analysis on Drill. In
this pane the results of the value information analysis is shown (Figure 3) and the set of information variables can be
defined (Figure 2).

Figure 1: The maximum expected utility of the decision variable Drill is MEU(Drill)=5.

Figure 1 shows that the maximum expected utility of the decision variable Drill is MEU(Drill)=5.

Value of information analysis on a decision variable is performed relative to a set of information variables. The set of
information variables can be selected as indicated in Figure 2.

© Copyright 2020, HUGIN EXPERT A/S 295

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Selecting the set of information variables.

Selecting information variables proceeds in the same way as selecting Target(s) of Instantiations in the d-Separation
pane (page 270).

For the custom group we restrict the set of possible information variables not to include descendants of the decision,
descendants of subsequent decisions, informational parents of the decision, or informational parents of preceding
decisions.

After selecting the set of information variables the value of information analysis can be performed by pressing Calcu-
late. The results for the example are shown below in Figure 3.

Figure 3: The results of value of information analysis on Drill relative to the selected set of information variables.

296 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

The results show the value of information of each of the selected information variables relative to the decision. There
is one bar for each information variable. The name of the information variable and the value of information of the
information variable relative to the decision is associated with each bar. The size of the bar is proportional to a
multiplum of the maximum expected utility of the decision.

The value displayed for each observation node is the difference between the maximum expected utility of the decision
node with and without the node observed before the decision.

Bayesian Networks

Consider the situation where a decision maker has to make a decision based on the probability distribution of a
hypothesis variable. It could, for instance, be a physician deciding on a treatment of a patient given the probability
distribution of a disease variable. For instance, if the probability of the patient suffering from the disease is above a
certain threshold, then the patient should be treated immediately. Prior to deciding on a treatment the physician may
have the option to gather additional information about the patient such as performing a test or asking a certain question.
Given a range of options, which option should the physician choose next? That is, which of the given options will
produce the most information? These questions can be answered by a value of information analysis.

Given a Bayesian network model and a hypothesis variable, the task is to identify the variable, which is most informa-
tive with respect to the hypothesis variable.

We consider myopic hypothesis driven value of information analysis on discrete random variables relative to discrete
random variables. The functionality is enabled when a discrete chance node is selected or when pressing the right
mouse button on a discrete chance node in the Node List Pane (page 227).

Entropy and Mutual Information

The main reason for acquiring additional information is to decrease the uncertainty about the hypothesis under con-
sideration. The selection of the variable to observe next (e.g. the question to ask next) can be based on the notion of
entropy. Entropy is a measure of how much probability mass is scattered around on the states of a variable (the degree
of chaos in the distribution of the variable). Entropy is a measure of randomness. The more random a variable is, the
higher its entropy will be.

Let X be a discrete random variable with n states x1,. . . ,xn and probability distribution P(X), then the entropy of X is
defined as:

𝐻(𝑋) = −E𝑃 (𝑋)[𝑙𝑜𝑔𝑃 (𝑋)] = −
∑︁
𝑥

𝑃 (𝑋)𝑙𝑜𝑔𝑃 (𝑋) ≥ 0

The maximum entropy, log(n), is achieved when the probability distribution, P(X), is uniform while the minimum
entropy, 0, is achieved when all the probability mass is located on a single state. Thus, the value of H(X) is in the
range [0,log(n)].

Since entropy can be used as a measure of the uncertainty in the distribution of a variable, we can determine how the
entropy of a variable changes as observations are made. In particular, we can identify the most informative observation.

If Y is a random variable, then the entropy of X given an observation on Y is:

𝐻(𝑋|𝑌) = −E𝑃 (𝑋,𝑌)[𝑙𝑜𝑔𝑃 (𝑋|𝑌)] = −
∑︁
𝑌

𝑃 (𝑌)
∑︁
𝑋

𝑃 (𝑋|𝑌)𝑙𝑜𝑔𝑃 (𝑋|𝑌) = 𝐻(𝑋)− 𝐼(𝑋|𝑌)

where I(X,Y) is the mutual information (also known as cross entropy) of X and Y. The conditional entropy H(X| Y) is
a measure of the uncertainty of X given an observation on Y, while the mutual information I(X,Y) is a measure of the
information shared by X and Y (i.e. the reduction in entropy from observing Y). If X is the variable of interest, then
I(X,Y) is a measure of the value of observing Y. The mutual information is computed as:

𝐼(𝑋,𝑌) = 𝐻(𝑋)−𝐻(𝑋|𝑌) = 𝐻(𝑌)−𝐻(𝑌 |𝑋) =
∑︁
𝑌

𝑃 (𝑌)
∑︁
𝑋

𝑃 (𝑋|𝑌)𝑙𝑜𝑔
𝑃 (𝑋,𝑌)

𝑃 (𝑋)𝑃 (𝑌)

© Copyright 2020, HUGIN EXPERT A/S 297

HUGIN Graphical User Interface Documentation, Release 8.9

In principle, I(X,Y) is a measure of the distance between P(X)P(Y) and P(X,Y). The conditional mutual information
given a set of evidence 𝜀 is computed by conditioning the probability distributions on the available evidence 𝜀:

𝐼(𝑋,𝑌 |𝜀) =
∑︁
𝑌

𝑃 (𝑌 |𝜀)
∑︁
𝑋

𝑃 (𝑋|𝑌, 𝜀)𝑙𝑜𝑔 𝑃 (𝑋,𝑌 |𝜀)
𝑃 (𝑋|𝜀)𝑃 (𝑌 |𝜀)

Thus, we compute I(X,Y) for each possible observation Y. The next variable to observe is selected as the variable Y,
which has the highest non-zero mutual information with X, i.e. I(X,Y), if any.

Value of Information Analysis

Value of information analysis is the task of identifying the values of pieces of information. When considering hypothe-
sis driven value of information analysis in Bayesian networks, we need to define a value function in order to determine
the value of an information scenario. Entropy can be used as a value function.

In a hypothesis driven value of information analysis the value of an information scenario is defined in terms of the
probability distribution of the hypothesis variable. If T is the hypothesis variable, then the value function is defined as:

𝑉 (𝑇) = −𝐻(𝑇) =
∑︁
𝑇

𝑃 (𝑇)𝑙𝑜𝑔(𝑃 (𝑇))

The reason for using the negation of the entropy is best illustrated using an example. Consider a binary hypothesis
variable T with states false and true. Hence, the distribution of T is fully specified by a single parameter p, i.e.
P(T)=(false,true)=(p,1-p). Figure 4 illustrates the entropy as a function of p while Figure 5 illustrates the negation of
the entropy as a function of p.

Figure 4: The entropy of T.

As can be seen from Figure 4 the entropy takes on its maximum value for the uniform distribution and its minimum
value for the extreme cases (p=0 and p=1). Since the value function should take on its maximum value at the extreme
cases and the minimum value in the uniform case, the negation of the entropy is used as the value function as illustrated
in Figure 5.

298 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 5: The negation of the entropy of T.

The value of the information scenario after observing a variable X is:

𝑉 (𝑇 |𝑋) = −(𝐻(𝑇)− 𝐼(𝑋,𝑇))

Thus, myopic hypothesis driven value of information analysis in Bayesian networks amounts to computing the value
of the initial information scenario V(H) and the value of information scenarios where a variable X is observed, i.e.
V(H| X). The task is to identify the variable, which increase the value of information the most. The most informative
variable to observe is the variable with the highest mutual information with the hypothesis variable.

Performing Value of Information Analysis

Value of information analysis on a selected hypothesis variable can be activated from either the Network Menu
(page 173), Node List Pane (page 227), or by clicking the right mouse button. Notice that the hypothesis variable
must be selected in order to activate value of information analysis.

Value of information analysis is supported for discrete chance variables relative to discrete chance variables.

Figure 6 shows the value of information pane appearing after activating value of information analysis on B. In this pane
the results of the value information analysis is shown (Figure 8) and the set of information variables can be defined
(Figure 7).

© Copyright 2020, HUGIN EXPERT A/S 299

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 6: The entropy of the hypothesis variable B is H(B)=0.69.

Figure 6 shows that the entropy of B is H(B)=0.69.

Value of information analysis on a hypothesis variable is performed relative to a set of information variables. The set
of information variables can be selected as indicated in Figure 7.

Figure 7: Selecting the set of information variables.

Selecting information variables proceeds in the same way as selecting Target(s) of Instantiations in the d-Separation
pane.

After selecting the set of information variables the value of information analysis can be performed by pressing Calcu-
late. The results for the example are shown below in Figure 8.

300 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 8: The results of value of information analysis on B relative to the selected set of information variables.

The results show the mutual information I(T,H) between the target node and each of the selected information variables.
There is one bar for each information variable. The name of the information variable and the mutual information
between the target node and the information variable are associated with each bar. The size of the bar is proportional
to the ratio between the mutual information and the entropy of the target node.

The examples above consider the case of discrete observation nodes. For possible observations on continuous chance
nodes an approximation is used. Instead of using the true mixture of Normal distributions for a continuous node, a
single Normal distribution with the same mean and variance is used as an approximation.

Mutual Information for All Pairs

In order to compare the strengths of dependency between different pairs of variables, a normalized variant of the
mutual information can be used:

𝑈(𝑋|𝑌) =
2𝑙(𝑋,𝑌)

𝐻(𝑋) +𝐻(𝑌)

Notice that this measure is symmetric in X and Y. After selecting the set of information variables the value of in-
formation analysis can be performed by pressing Calculate. The results for the example are shown below in Figure
9.

© Copyright 2020, HUGIN EXPERT A/S 301

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 9: the results of an Analysis of All Paris calculation.

4.6.11 Continuous-Discrete Node Value Transfer Function

The Continuous-Discrete node Value Transfer function (CDVT function) is available in Analysis Menu under the
Network Menu. In essence the CDVT function implements a modelling technique to circumvent the limitation of no
discrete children of continuous nodes in CLG Bayesian networks. A discrete interval node is linked to a continuous
node such that the expression generating the distribution of the discrete node is equal to the posterior marginal of the
parent continuous node. In this way the discrete node becomes a discretize representation of the continuous node. The
discrete node has no table as the table is regenerated using the Table Generator functionality. The states of the discrete
node are determined by the user prior to compiling the network.

Figure 1: The dashed arrow specifies a CVDT function link. Figure 1 shows a link between a continuous and discrete
nodes pair created by the CDVT function.

Figure 2: The Discrete Score is a discrete approximation of the Continuous Score computed using Table Generator
functionality. Figure 2 illustrates how the density function of a continuous node can be approximated by a discrete
distribution using the CDVT function.

The CDVT function has some major limitations such as evidence can only be propagated along the direction of the
CDVT link, only sum-normal equilibrium is supported and no type of analysis is supported on a network with CDVT
links.

The discretization link should be used with extreme care.

302 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.6.12 Convolution of Frequency-Impact Distributions

The convolution dialog allows the user to compute the convolution of frequency-impact distributions where the con-
volution is computed as a weighted sum of independent variables distributed as impact with the number of terms in
the sum defined by frequency. The frequency node represents the probability distribution over the number of events.

What is Convolution?

The assumption of the convolution functionality is that the frequency node predicts the expected number of events in
one time period while the impact node predicts the cost of one given event. The frequency and impact nodes may
dependent of the value of other nodes. The convolution of the frequency and impact distributions is the total impact.
The convolution of a frequency distribution and an impact distribution is computed as the sum of independent variables
as illustrated in this formula:

𝑃 (𝐹 = 1) * 𝐼 + 𝑃 (𝐹 = 2) * (𝐼 + 𝐼) + 𝑃 (𝐹 = 3) * (𝐼 + 𝐼 + 𝐼) + ...

where F is the frequency node and the I’s are independent random variables distributed as the impact node. The
convolution is a sum of distributions where the kth term is the probability of k events multiplied with the distribution
of a sum of k cost variables where each cost variable is a random variable with a distribution equal to that of impact
and all cost variables are independent.

Computing a Convolution

Convolution of frequency-impact distributions is supported for a pair nodes consisting of a numbered node and an
interval node. The numbered and interval nodes must be well-formed. The interval node is well-formed if its intervals
cover the range from zero to infinity (and it otherwise meets the requirements for an interval node). The numbered
node is well-formed if its state values are zero, one, two, three, e.t.c. (and it otherwise meets the requirements for a
numbered node). The numbered node is interpreted as the frequency node and the interval node is interpreted as the
impact node. The convolution of the frequency and impact distributions is computed with respect to the states of an
interval node. This is the total impact node. The intervals of the total impact node are equal to the intervals of the
impact node.

The convolution algorithm is based on the Table Generator implementation, i.e., for each interval a predefined number
of values are used in the calculations (as opposed to only using the middle value of an interval).

Convolution is supported for a domain in sum-normal equilibrium.

Figure 1 shows the convolution pane appearing after activating the convolution analysis. In this pane the result of
convoluting the frequency and impact distributions is shown (Figure 2). Initially, Figure 1 shows the (posterior)
probability distributions of the frequency node and the impact node.

© Copyright 2020, HUGIN EXPERT A/S 303

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The dialog shows the distributions of the frequency node and the impact node.

The total impact distribution (i.e., the convolution of frequency and impact) is computed once the Convolute button is
depressed.

Figure 2: The total impact distribution.

Figure 2 shows the total impact distribution. The total impact distribution is computed as the convolution of the
frequency and impact distributions. The convolution is computed over the intervals of the impact node.

304 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.6.13 The Exposure, Occurrence and Impact Loss Model

The XOI Loss Model dialog allows the user to compute a loss distribution based on the eXposure, Occurrence, and
Impact Loss Model (XOI Loss Model). A XOI loss distribution can be computed by either MC simulation or by
convolution of impact and exposure/frequency distribution.

What is the XOI Loss Model?

The XOI Loss Model computes a total impact distribution based on exposure, occurrence, and impact.

• Exposure is a quantitative specification of the number of independent objects at risk.

• Occurrence is a Boolean specification of the occurrence of an event on one exposed object during one period.

• Impact is a quantiative specification of the severity of the occurrence of an event on one specific object.

The occurrence node is a Boolean chance node, the impact node is an interval node, and the exposure node is a
numbered or interval node. Based on the states and distributions of exposure, occurrence, impact a total impact
distribution is calculated. This distribution assesses the risk related to all exposed objects. The distribution is computed
with respect to an interval node referred to as total impact. This node is created by HUGIN.

Figure 1 shows the XOI Loss Model dialog.

Figure 1: The XOI Loss Model dialog.

The calculation of the loss distribution under the XOI Loss Model is a two step process. In the first step a (large)
number of samples or tiny intervals with associated probability are generated. In the second step the samples or tiny
intervals are used as the basis for identifying the intervals of total impact.

There are two models for generating the samples (we refer to the tiny intervals generated as samples too) of total
impact: the MCMC model and the Convolution model. Under the MCMC model the samples are simulations of the
values of total impact while under the Convolution model the samples are (tiny) intervals of total impact with an
associated probability (i.e., samples are not sampled values, but correspond to a very fine-grained discretization of

© Copyright 2020, HUGIN EXPERT A/S 305

HUGIN Graphical User Interface Documentation, Release 8.9

total impact. As mentioned, we refer to these intervals as samples). In each case a large number of samples should be
generated when a high accuracy is desired.

There are some requirements that must be fulfilled under the XOI Loss model:

• The first state of impact must include zero.

• The numbered and interval nodes must be well-formed. The interval node is well-formed when its intervals
cover a positive range including zero (and it otherwise meets the requirements for an interval node).

• The exposure node can either be numbered or interval, but it must be positive, i.e., its states must specify positive
values.

A few details on the implementation applying to both the MCMC and the Convolution algorithm:

• Once a value of exposure is determined, the posterior beliefs of impact and occurrence are updated, i.e., a full
evidence propagation is performed. This implies that the distribution of each other node is conditioned on the
value of exposure.

• If an interval has a probability mass larger than 10%, then it is not possible to perform the percentile fitting
operation.

• It is important for the user to make sure that the probability associated with semi-infinite intervals are small (in
order to minimize their influence on the calculations).

• When two interval nodes and one Boolean node are selected the user may have to change the choice of exposure
(and impact) node.

• We do not allow evidence exposure, impact, and occurrence.

The MCMC Model

Under the MCMC model the loss distribution, i.e., the posterior probability distribution of total impact, is calcu-
lated based on Monte-Carlo simulation. A large number of samples are generated conditional on exposure and other
evidence. The distribution of total impact is calculated as the accumulated loss.

Each sample is generated as follows. First a value of exposure is sampled. Then we sample the remaining variables
n times where n is the sampled value of exposure (holding the value of exposure fixed). If occurrence is true, we
accumulate the value of impact. The exposure node is sampled as many times as specified by the user. Each sampled
value of total impact requires as many samples as specified by exposure. The final accumulated value is the desired
sampled result.

The Convolution Model

Under the Convolution model the loss distribution, i.e., the posterior probability distribution of total impact, is calcu-
lated based on the convolution of a frequency and an impact distribution.

The convolution function computes the convolution of a frequency distribution and an impact distribution. We use the
convolution function to compute the distribution of total impact where a Binomial distribution is used as the frequency
distribution. That is, the frequency distribution is simulated using a Binomial distribution with parameters n and p.
The parameter n is equal to a value of exposure and the parameter p is equal to the probability of Occurrence being
true. The convolution algorithm is based on the Table Generator implementation, i.e., when exposure is an interval
node we for each interval use a predefined number of values in the calculations (as opposed to only using the middle
value of an interval).

The initial number of bins is set to 10000 and the maximum loss is set to maximum exposure times maximum loss.
The initial value of maximum loss may be too large when the probability of occurrence is low. When the maximum
loss is too large a large number of intervals will be assigned zero probability. In this case the maximum loss can be

306 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

reduced in order to obtain a more fine-grained initial discretization of total impact. Figure 2 shows the XOI Loss
Model dialog once the Convolution tab is selected by the user.

Figure 2: The XOI Model dialog once the Convolution tab is selected by the user.

Once the user selects to convolute the tool generates the samples for total impact. Figure 3 shows samples generated
for total impact.

Figure 3: The samples generated once the user selects to convolute.

© Copyright 2020, HUGIN EXPERT A/S 307

HUGIN Graphical User Interface Documentation, Release 8.9

The samples generated for total impact can be fitted to a (significantly) reduced number of intervals. This fitting
operation is a discretization process. The user has to select how the discretization should be performed. The user can
either choose to perform a uniform discretization (and specify the number of states) or a percentile-based discretization
(an example of the percentile-based discretization is show in Figure 4).

Figure 4: The distribution of total impact as a result of convolution.

Figure 4 shows the distribution of total impact as a result of convolution.

4.6.14 Joint Probability Distribution

Figure 1 shows the joint analysis pane appearing after activating the joint configurations dialog. In this pane the joint
probability distribution over a set of nodes is shown (Figure 3). The set of nodes in the joint can be defined by selecting
the “Variables” tab (Figure 2).

308 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: No joint distribution has been computed.

A joint probability distribution is computed over a set of nodes. The set of nodes can be selected as indicated in Figure
2.

Figure 2: Selecting the set of nodes in the joint distribution.

Selecting nodes to appear in the joint proceeds in the same way as selecting Target(s) of Instantiations in the d-
Separation pane.

After selecting the set of nodes their joint probability distribution is computed by selecting Calculate. The results for
the example are shown below in Figure 3 where the probabilities are sorted.

© Copyright 2020, HUGIN EXPERT A/S 309

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: The joint distribution over the selected set of nodes.

The joint probability distribution over a set of nodes is computed by message passing in a junction tree. The feasibility
of computing a joint distribution is in part determined by the size of the junction tree and the combined state space
size of the nodes in the joint. The size of the joint distribution is equal to the product of the state space sizes of the
nodes in the jiont. Thus, the size of the joint distribution grows exponentially with the number of nodes in the joint.

Notice that the most probable configurations can be identified by sorting the rightmost column. This do, however,
require that the full joint is computed. Alternatively, the most probable configurations of a subset of nodes can be
identified using the Most probable tab.

Figure 4: The most probable configurations over the selected set of nodes with a probability higher than the threshold.

This dialog can be used to identify the most probable configurations over a set of nodes when their joint is too large
to be represented in main memory or if the joint cannot be computed. The user is asked to supply a threshold on the
probability of the configurations to be included in the result. The lower the thredhold is, the longer the algorithm has
to run.

The result for the example above with a threshold of 0.01 is shown below.

310 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 5: The most probable configurations with a probability higher than the defined threshold.

This method is not supported for networks with decisions.

4.6.15 Correlation Analysis Dialog

Figure 1 shows the correlation analysis dialog as it appears after being activated. In dialog the correlation between a
pair of discrete chance node can be analysed using a number of different measures.

Figure 1: The Correlation Analysis Dialog.

The dialog supports three different methods for analysing the correlation between a pair of nodes X and Y: the condi-
tional probabability distribution, the joint probability distribution, and the Pearson test.

The correlation between the selected pair of nodes X and Y is illustrated using a color intensity chart. Each entry of
the chart corresponds to a configuration of X and Y. The more intense the color is the higher the value displayed in
the entry is. The entries of the color chart are computed using the selected correlation measure when the user press
Compute.

© Copyright 2020, HUGIN EXPERT A/S 311

HUGIN Graphical User Interface Documentation, Release 8.9

If the normalize chart check box is checked, then the numbers displayed in the color chart are normalized such that
the maximum value has the maximum color intensity. This is useful, for instance, if the values in the joint probability
distribution are all much less than one. In this case the color intensity will be low. By normalizing the chart, the
maximum value will have maximum color intensity.

In the following sections the three methods for analysing the correlation between a pair of discrete chance variables
are described.

Conditional Probability

Figure 2 shows the conditional probability distribution of X given Y computed based on the entered and propagated
evidence.

Figure 2: The conditional probability distribution of X given Y.

Notice that X and Y can in principle be any pair of discrete chance nodes in the model.

The computation of the conditional probability distribution may in principle fail with an out-of-memory error. This will
happen if the tables in the underlying junction tree become too large during the process of computing the conditional.

312 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Joint Probability Distribution

Figure 3 shows the joint probability distribution of X and Y computed based on the entered and propagated evidence.

Figure 3: The joint probability distribution over X and Y.

Notice that X and Y can in principle be any pair of discrete chance nodes in the model. The computation of the
joint probability distribution may in principle fail with an out-of-memory error. This will happen if the tables in the
underlying junction tree become too large during the process of computing the joint.

Pearson Test

Figure 4 shows the joint counts table X and Y computed based on the entered and propagated evidence.

© Copyright 2020, HUGIN EXPERT A/S 313

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: A table of counts over X and Y.

The table of counts is computed by generating a sample over X and Y consisting of the number of samples defined by
the user. The sample is generated based on the evidence entered and propagated in the network. Based on this sample
the likelihood chi2 score is computed and displayed for each configuration of X and Y.

4.6.16 Distance Analysis Dialog

Interaction with the Dialog

Figure 1 shows the distance analysis dialog as it appears after being activated. In dialog the distance between a pair
of Network Models can be measured. The models subject to analysis must be loaded before activating the dialog.
Whether the model needs to be in runtime mode depends on the selected measurement method. The text area is used
for output. If the dialog succeeds in calculating a measure, the configuration and result will written here.

314 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The Correlation Analysis Dialog.

Select the input parameters:

• M1 and M2 are the models used in the analysis. Choices are among the loaded Models.

• Measure is the measuring method used in the analysis. The available distance measures and additional details
can be found under Available Measures (page 316) below.

The dialog will attempt to perform a distance calculation as soon as any input parameter has been changed. In case one
of the models is not in the required mode, the dialog will inform about this inside the result text area below. Also, in
case the measurement method encounters incompatible node types or any other limitation a message will also appear
in the result text area.

© Copyright 2020, HUGIN EXPERT A/S 315

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The out put will provide indications of any error or any encountered limitation.

Available Measures

Hellinger Distance

Requirements and Limitations

The Hellinger Distance measures the distance between 2 Bayesian Network Models: M1 and M2. Identical Variables
are recognized in M1 and M2 by names of variables. Nodes with identical names in M1 and M2 must have the same
number of states. Only discrete chance nodes are allowed. Hellinger Distance works for models both in edit mode and
i run mode.

The Hellinger Distance between two probability distributions P and Q is defined as:

𝐷𝐻(𝑃,𝑄) =

√︃∑︁
𝑖

√
𝑝𝑖 −

√︀
𝑄𝑖

Weighted Hellinger Distance

Requirements and Limitations

The Weighted Hellinger Distance measure has the same requirements and Limitations as Hellinger Distance (page 316)
exept that it requires models to be in runmode.

In the Weighted Hellinger Distance: 𝐷𝑤
𝐻(𝑃1(𝑋|𝜋), 𝑃2(𝑋|𝜋)), the Hellinger Distance (page 316)

𝐷𝐻(𝑃1(𝑋|𝜋), 𝑃2(𝑋|𝜋)) is weighted by the probability of the parent configuration 𝑃 (𝜋).

316 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.6.17 Parameter Sensitivity Analysis

Parameter Sensitivity analysis is the analysis of how sensitive the results of a belief update (propagation of evidence)
is to variations of the value of a parameter of the model. The parameters of a model are the entries of the conditional
probability distributions.

• Parameter sensitivity Analysis (page 317)

• Import a case file (page 319)

• Accross cases (page 321)

• Open Network (page 322)

Parameter Sensitivity Analysis

The Parameter Sensitivity panel allows us to perform sensitivity analysis on the hypothesis variable to changes on the
value of the parameter variable. The sensitivity analysis is based on the sensitivity function:

𝑓(𝑡) = (𝛼 * 𝑡+ 𝛽)/(𝛾 * 𝑡+ 𝛿)

for computing the belief of a state of a node for a given CPT value of a parameter. The sensitivity value is computed
based on the function

𝑓 ′(𝑡) = (𝛼 * 𝛿 − 𝛽 * 𝛾)/𝛾 * 𝑡+ 𝛿)2

In the following example (Figure 1.) the “asia.net” network is loaded and compiled before entering the Parameter
Sensitivity Panel (available from the “Wizards” menu in Run-mode). The “Has bronchitis” node is selected as the
hypothesis variable and “All States” is checked so an analysis will be performed on all states of the Hypothesis
node. The node “Smoker” is selected as the parameter variable. When selecting a parameter variable its CPT table is
displayed in the middle of the panel (Figure 1).

© Copyright 2020, HUGIN EXPERT A/S 317

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Parameter Sensitivity Analysis

By clicking on yes = 0.5 in the CPT table, the sensitivity function is used to compute a value (belief) for each state
of the hypothesis variable. A graph is displayed on the top right corner of the panel, showing two lines that represent
how sensitive the states of the hypothesis variable are, to changes of the parameter values, i.e., the entry of the CPT
selected which in the example is yes = 0.5.

From this graph we notice that the state of the hypothesis variable with highest probability changes when the parameter
value is above approximately 0.7. Also, notice that the sensitivity function is a straight line. Given that “Smoker =
yes = 0.5” the belief that the patient has bronchitis is 0.45 and the belief that he doesn’t have bronchitis is 0.55. These
points (0.5, 0.45) and (0.5, 0.55) are shown on the graph.

Sensitivity analysis can not be performed for extreme CPT values, i.e., zero and one. When the hypothesis node has
many states, the graph can become confusing because of overlapping sensitivity function lines. By selecting a state in
the graph information table (upper - left), only the sensitivity function line for the selected state will be displayed in
the graph. To see all lines again, select a CPT index in the Parameter variable table. The table located in the middle of
the panel (Figures 1a, 1b), is the CPT table of the node selected in the Parameter Variable combo. When selecting a
cell in the table, sensitivity analysis is performed using the selected cpt value. The radio boxes “MIN SV” and “MAX
SV” allows the user to view a color chart that represents the sensitivity values for every cpt index.

318 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1a: CPT table of Dyspnoea with a color chart showing the minimum Sensitivity values.

When a color chart with the minimum sensitivity values is selected (Figure 1a), the darker the red color is, the lower
the minimum sensitivity value is for the corresponding cpt value.

Figure 1b: CPT table of Dyspnoea with a color chart showing the maximum Sensitivity values.

When a color chart with the maximum sensitivity values is selected, the darker the blue color is, the higher the
maximum sensitivity value is for the corresponding cpt value (Figure 1b).

Pointing on a cell in the color chart, displays the actual value of the MIN/MAX sensitivity value; clicking on it selects
the corresponding cpt index and performs sensitivity analysis.

The “MIN SV” and “MAX SV” are only enabled when the user has selected to perform sensitivity analysis on all
states because otherwise, each cpt value corresponds to one sensitivity value so a color chart showing those values is
displayed.

Import a case file

It is possible to perform parameter sensitivity analysis after inserting a case stored in a case file or a set of cases stored
in a data file. A case file represents a single case whereas a data files represents a number of cases for a given network.
The “Data Source” button imports a file in the wizard and gives the user the possibility to select cases and enter them
as evidence in the domain. Sensitivity analysis can now be performed for each case in the file. In Figure 2, a case file
“asia-cases” is imported and displayed as a table. When clicking on a case, it is entered as evidence in the domain and
after performing sensitivity analysis as shown above (Figure 1), the sensitivity values calculated and the lines in the
graph, are different because the new evidence is taken in to consideration.

© Copyright 2020, HUGIN EXPERT A/S 319

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Sensitivity analysis with evidence from a case file.

Sensitivity analysis can not be performed on a hypothesis node with evidence entered. To avoid error messages, the
node names of nodes with evidence are marked with (e) in the Hypothesis Variable Combo. (Figure 2a)

Figure 2a: Hypothesis Variable Combo

320 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Accross cases

When cases are loaded in the wizard, it is possible to perform parameter sensitivity analysis across many cases.
Selecting all (Ctrl-A) or some cases in the cases table (Figure 2b) and then computing the sensitivity for the selected
hypothesis and parameter, will generate a table in the information panel that displays the results for all cases. Each
row in the table shows the results of the parameter sensitivity analysis for the selected state of the hypothesis, in each
case. It is not possible to compute sensitivity for all states of the hypothesis accross cases. No results are shown for
cases where the computation has failed (fx. when evidence is entered in the hypothesis).

Figure 2b: Sensitivity computed accross cases.

The information table in addition to the Sensitivity Value, also displays the Parameter Importance value as it adjusts
through every case. The parameter importance value at the last row is the final one computed after going through all
cases.

Selecting a row in the info table will show the Sensitivity function graph for the selected case.

© Copyright 2020, HUGIN EXPERT A/S 321

HUGIN Graphical User Interface Documentation, Release 8.9

Open Network

The “Sensitivity Set Graph Panel” is a tool to help visually capture the results of the parameter sensitivity analysis,
directly on the network. It is accessibly by pressing the “Open Network” button in the “Parameter Sensitivity Panel”.
Every node is divided in three parts and every part is painted in a different colour. Starting from the left of a node, the
colours used are blue, red and green which represent different values.

• The blue colour (left) represents the maximum sensitivity value.

• The red colour (center) represents the minimum (negative) sensitivity value.

• The green colour (right) represents the average sensitivity value.

The tone of each colour indicates how high the value they represent is. In case of the maximum and average sensitivity
values (blue, green), the higher the number is, the darker the colour becomes. In case of the minimum (red) value
the opposite applies. If a value is 0, the colour gets toned down to white. The yellow colour indicates that it was
not possible to compute sensitivity values for that node, either because the propagation failed (because of inconsistent
evidence or evidence is entered in the hypothesis) or because the values in the node’s CPT table are 0 and 1.

Figure 3: Sensitivity set graph

Figure 3 shows an example of the “asia” network. In this example, it is immediately visible which nodes have the
highest values and which have values 0 or close to 0. By pointing on the “Dyspnoea” node, the node’s minimum,
maximum and average values are displayed at the bottom of the panel together with its name and label. Selecting a
node on the network will set it as the parameter variable in the “Parameter Sensitivity Panel” (page 317).

4.6.18 Two Way Parameter Sensitivity

Parameter Sensitivity analysis is the analysis of how sensitive the results of a belief update (propagation of evidence)
is to variations of the value of a parameter of the model. The parameters of a model are the entries of the conditional
probability distributions.

The two way parameter sensitivity analysis observes the resultes of a belief update to variations of the values of two
parameters of the model. The parameter values could be entries of the conditional probability distribution from one or
two nodes.

• Two way parameter sensitivity Analysis (page 323)

322 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• Import a case file (page 325)

• Sensitivity across cases (page 325)

Two way sensitivity analysis

The Two Way (P.S) panel performs parameter sensitivity analysis with values from two parameters of the model. On
the top left corner there are four drop down boxes that accept user input.

• “Hypothesis variable” : Select the node to be observed.

• “State” : Select the state of the hypothesis node to be observed. To observe all states check the “All states”
check box.

• “Parameter 1” : Select the node from which we will select parameter values. The probability distribution table
(CPT) of the selected node is displayed in the middle of the panel. To perform sensitivity analysis on changes
to two parameter values from the same CPT, select two values in the CPT and press “compute”. The results are
shown in the information table and the 3D graph, simular to the Parameter Sensitivity Panel (page 317).

• “Parameter 2” : To perform parameter sensitivity analysis on changes to two parameter values from two CPTs,
check the check box next to “Parameter 2” drop down box to enable it. Selecting a second node in this drop
down will display a tabbed panel in the middle of the Two Way (P.S) Panel that holds two CPTs. Select one
parameter value in each CPT and press “compute”.

© Copyright 2020, HUGIN EXPERT A/S 323

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Parameter Sensitivity Analysis

When performing parameter sensitivity analysis with two parameters from the same CPT the information table dis-
played includes the following columns:

• State: The state of the hypothesis node.

324 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• CPT1, CPT2: The first and the second parameters selected in the CPT.

• Result: The belief of the given state of the hypothesis.

• 𝛼, 𝛼1, 𝛽, 𝛾, 𝛾1, 𝛿: Sensitivity constants.

• Sensitivity value1: The sensitivity value of the current states to changes of the value of the first parameter
(CPT1). The sensitivity value1 is computed based on the function:

(𝛼1 * 𝛾2 − 𝛼2 * 𝛾1) * 𝑐𝑝𝑡2 + 𝛼1 * 𝛿 − 𝛾1 * 𝛽
(𝛾1 * 𝑐𝑝𝑡1 + 𝛾2 * 𝑐𝑝𝑡2 + 𝛿)2

• Sensitivity value2: The sensitivity value of the current states to changes of the value of the second parameter
(CPT2). The sensitivity value2 is computed based on the function:

(𝛼2 * 𝛾1 − 𝛼1 * 𝛾2) * 𝑐𝑝𝑡1 + 𝛼2 * 𝛿 − 𝛾2 * 𝛽
(𝛾1 * 𝑐𝑝𝑡1 + 𝛾2 * 𝑐𝑝𝑡2 + 𝛿)2

The sensitivity function used to generate the 3D graph is: 𝛼1*𝑐𝑝𝑡1+𝛼2*𝑐𝑝𝑡2+𝛽
𝛾1*𝑐𝑝𝑡1+𝛾2*𝑐𝑝𝑡2+𝛿

The Sensitivity values are currntly not computed when performing parameter sensitivity analysis with two parameters
from two CPTs.

Import a case file

It is possible to perform parameter sensitivity analysis after importing cases from a case file (page 85) or a database.
The “Data Source” button imports cases in the wizard and gives the user the option of selecting a case to be entered
as evidence in the domain. Sensitivity analysis can now be performed for each case in the file. In Figure 2, a case
file is imported and displayed as a table. When clicking on a case, it is entered as evidence in the domain and after
performing sensitivity analysis as shown above (Figure 1), the sensitivity values calculated and the lines in the graph,
are different because the new evidence is taken in to consideration.

Sensitivity analysis can not be performed on a hypothesis node with evidence entered. To avoid error messages, the
node names of nodes with evidence are marked with (e) in the Hypothesis Variable Combo.

Across Cases

When cases are loaded in the wizard, it is possible to perform parameter sensitivity analysis across many cases.
Selecting all (Ctrl-A) or some cases in the cases table (Figure 2) and then computing the sensitivity for the selected
hypothesis and parameters, will generate a table in the information panel that displays the results for all cases. Each
row in the table shows the results of the parameter sensitivity analysis for the selected state of the hypothesis, in each
case. It is not possible to compute sensitivity for all states of the hypothesis across cases. No results are shown for
cases where the computation has failed (fx. when evidence is entered in the hypothesis).

© Copyright 2020, HUGIN EXPERT A/S 325

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Sensitivity computed across cases.

The information table in addition to the Sensitivity Value, also displays the Parameter Importance value as it adjusts
through every case. The parameter importance value at the last row is the final one computed after going through all
cases. The parameter importance value is currently not computed when performing parameter sensitivity analysis with
two parameters from two CPTs.

326 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Selecting a row in the info table will show the Sensitivity function graph for the selected case.

4.7 Bayesian Network

4.7.1 Bayesian Networks

A Bayesian network is a set of nodes representing random variables and a set of links connecting these nodes in an
acyclic manner. Each node has assigned a function which describes how the state of the node depends on the parents
of the node.

In HUGIN networks, you can represent two kinds of random variables: discrete chance nodes (page 208) having a
discrete finite state space and continuous chance nodes (page 209) having a continuous infinite state space.

For the discrete chance nodes, the function describing how the node depends on its parents is a conditional probability
table (page 226). For continuous chance nodes (page 209) it is a probability density function (PDF) - in HUGIN it
must be a Gaussian (normal) distribution function (page 115).

In HUGIN, you can also construct influence diagrams (page 327) which are Bayesian networks extended with decision
nodes and a utility functions.

A Bayesian network is really just a smart representation of a domain of dependent random variables.

Many real-life situations can be modeled as a domain of random variables. In a medical domain such random variables
could represent risk factors, diseases, symptoms, patho-physiological features, etc. A domain of random variables
could form the basis of a decision support system to help decision makers make the decision that is most beneficial in
a given situation.

If you want to represent a domain of random variables (all having a discrete and finite state space), you can always do
this by the joint probability table of the entire domain. That is, a table with an entry for each configuration of the nodes
of the domain. However, the number of configurations of a domain grows exponentially in the number of random
variables, so this would only work for very small domains.

What you use to keep the representation size to a minimum in networks is the conditional independences in the domain:
Very often the knowledge about a random variable being in a specific state will make other variables independent and
thus it would be an overkill to have an entry for all combinations of these independent variables (they would all contain
the same value).

This is not the right place to describe the theory behind Bayesian networks in detail. You should be able to find some
useful literature about the subject elsewhere. A good place to start is the textbook Bayesian Networks and Decision
Graphs (page 519). See also a brief overview of the three main Paradigms of Expert Systems (page 16).

4.7.2 Limited Memory Influence Diagram

A limited memory influence diagram is a Bayesian network (page 327) extended with decision facilities (decision nodes
(page 209) and utility nodes (page 211)). The limited memory influence diagram (LIMID) extends the traditional
influence diagram by relaxing two fundamental assumptions: a non-forgetting decision maker and a total order on
decisions. In a LIMID all information available to the decision maker must be specified using informational links
(page 146) and decisions may by unordered.

Due to the elimination of the non-forgetting assumption of the decision maker it is in a LIMID important to specify
for each decision exactly what information is available to the decision maker. Each variable which is observed prior
to making a decision should have a link going into the decision. If the state of a node will be known at the time of
making a decision, this will (probably) have an impact on what the decision maker should do. Thus, one must add a
link (page 146) from the node to the decision node.

© Copyright 2020, HUGIN EXPERT A/S 327

HUGIN Graphical User Interface Documentation, Release 8.9

If a node X is (informational) parent of a decision Di, but not parent of a subsequent decision Dj, this implies that X is
known prior to decision Di, and not known at subsequent decision Dj,. This implies that the observation is not known
by the decision maker at second decision.

The solution to a LIMID is a strategy consisting of one policy for each decision. The policy is a function from the
known variables to the states of the decision. It is not a function of all past observations as the decision maker is
assumed only to know the most recent observation on loses leaves. This is different from the traditional influence
diagram where the policy would be a function from all past observations and decisions as the decision maker is
assumed to be non-forgetting. There need not be a total order on the decisions.

Each decision in the LIMID has an initial policy which can be defined by the user either by hand or using expressions.
The initial policy is a table specifying a mapping from configurations of the parents of the decision to states of the
decision. This initial policy is updated in the process of solving the LIMID.

The solution to a LIMID is determined using Single Policy Updating (page 241).

An influence diagram cannot contain continuous chance nodes (page 209).

4.7.3 Object-Oriented Network

An Object-Oriented Network is a network (i.e., Bayesian network or (limited-memory) influence diagram) that, in
addition to the usual nodes, contains instance nodes. An instance node is a node representing an instance of another
network. In other words, an instance node represents a subnet. Of course, the network of which instances exist in
other networks can itself contain instance nodes, whereby an object-oriented network can be viewed as a hierarchical
description (or model) of a problem domain. There are three main advantages of constructing a network using instance
nodes:

• The model construction activity most often involves repeated changes of level of abstraction. That is, it is
performed in a top-down fashion, a bottom-up fashion, or a mix of the two. Such repeated changes of focus are
due partly to the fact that humans naturally think about systems in terms of hierarchies of abstractions and partly
due to lack of ability to mentally capture all details of a complex system simultaneously. The use of instance
nodes provides support for working with different levels of abstraction in constructing network models.

• As systems often are composed of collections of identical or almost identical components, models of systems
often contain repetitive patterns (i.e., commonly occurring solutions or problem types). In Bayesian networks
and influence diagrams, such patterns are network fragments. The notion of instance nodes makes it very easy
to construct multiple identical instances of a network fragment.

• Describing a network in a hierarchical fashion often makes the network much less cluttered, and thus provides
a much better means of communicating ideas among knowledge engineers and users.

An instance node connects to other nodes via some of the (basic) nodes in the copy of the network (the master) of
which it is an instance. (Note that an instance node should be thought of as a copy of the network of which it is an
instance.) These nodes are known as interface nodes. As we wish to support information hiding, the interface nodes
only comprise a subset of the nodes in the master network. Interface nodes are subdivided into a set of input nodes
and output nodes:

• Input nodes of an instance of a master network are not real nodes but only to be considered as placeholders for
(basic) nodes of the network(s) containing instances of the master network. These basic nodes are said to be
bound to the input nodes (and vice versa). Note that if an input node of an instance hasn’t been bound, a default
potential (probability table) will be associated with it. The probabilities in this table is specified in the master
network.

• Output nodes of an instance of a master network are real nodes that can be specified as parents of nodes in the
network containing the instance node or can be bound to an input node of another instance node of the network.

Instance nodes can be displayed in two different modes: Expanded (showing its interface nodes) and collapsed (having
the same size as other nodes). To avoid problems with overlapping nodes and increased node distances when expanding
and collapsing an instance node, respectively, the HUGIN Graphical User Interface provides a rudimentary feature for

328 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

moving nodes that would otherwise overlap with the instance node or be placed too far away from it when expanding
or collapsing, respectively, the instance node. This feature can be enabled or disabled by clicking the “Fit network
when expanding notes” check box of the OOBN tab of the Network Properties Pane (page 167) (see Figure 1).

When connecting a node to an to input nodes in an OOBN instance two nodes must be consistent. To be consistent,
they must have the same “Category” and “Kind”. The Category indicates whether it is a chance node, a decision node,
a utility node, or an instance node. The Kind indicates whether a chance or a decision node is discrete or continuous.
Furthermore, if the kind of the node is discrete, it must have the same number of states, and finally, if it is Numeric,
the state values must be the same. The Hugin Graphical User Interface offers to check whether these rules are satisfied
while the model is being constructed or only when the model is compiled. To disable the checks while the model is
constructed un-check the box labelled “Check consistency when adding a link to an input node” (see Figure 1).

Figure 1: The Network Properties dialog box showing the OOBN tab.

The tutorial on object-oriented networks (page 55) shows how to construct an object-oriented network using the

© Copyright 2020, HUGIN EXPERT A/S 329

HUGIN Graphical User Interface Documentation, Release 8.9

HUGIN Graphical User Interface.

4.7.4 Conditional Independence and Dependence

The notion of conditional independence and dependence (CID) is central in Bayesian networks. For example, the CID
statements of a Bayesian network play an important role in (structural) model verification (page 330), explanation
(analysis of relevance and irrelevance), and (of course) for efficiency of inference.

The CID statements of a Bayesian network is encoded by its graphical structure, and can be read using the rules of
d-separation (page 271).

4.7.5 Model Verification

A very important activity in model construction is verification of model structure through analysis of the conditional
independence and dependence statements encoded by the structure.

Letting arrows point from effect to cause instead of from cause to effect is one of the most frequent mistakes made,
and which can lead to severe problems with specifying the CPTs (e.g., if arrows point from a large number of effect
variables to a single cause variable) and wrong inference.

As an example of the practical use of CID analyses to perform structural model verification, consider the problem
of constructing a model for detection of fraud usage of credit cards. Assume we have the following three Boolean
variables:

A: Two or more PC’s bought within a few days using the same credit card.

B: Credit card used almost at the same time at different locations.

C: Fraud.

The model A → C ← B may at first glance appear to be natural (A and B are used as “inputs” to determine the
probability of C).

From the rules of d-separation (page 271), however, we can see that this model tells us that observing A (or B) does
not provide us with any information about B (or A) when C is unknown. This is wrong, as observing A (or B) increases
our belief in C, which in turn increases our belief that we might also observe B (or A). Therefore, this model simply
gives wrong probabilities!

The model A← C→ B, on the other hand, makes A and B dependent when we have no (definite) knowledge about C
(i.e., observing A (or B) will increase our belief that we will also observe B (or A)). When we have definite knowledge
about C (i.e., the value of C is known), then this model tells us that A and B are independent, which seems to be quite
reasonable (if we know for sure that we are considering a fraud case, then observing A (or B) will not change our
belief about whether or not we are going to observe B (or A)).

4.7.6 OOBN EM Learning

Instead of estimating parameters for a class in isolation from the context of an object oriented model where the class
may have numerous instances, OOBN EM estimates the class parameters using evidence on all instances and the entire
object oriented model.

The initial contents of the experience tables of nodes in the object-oriented model form the basis for the computation
of “prior counts”. However, in the current implementation, prior experience is not supported for continuous nodes in
objectoriented models (that is, the experience tables for such nodes must not contain positive values).

The contents of the updated experience tables reflect the fact that many instance nodes contribute to the learning of the
same node in a class (i.e., the experience counts will be higher than the number of cases in the data set). Otherwise,
everything specified in EM Learning (page 334) also apply for OOBN EM.

330 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

OOBN EM is an integrated part of EM learning in HUGIN, either press the EM Learning Button (page 155) or select
the EM Learning Wizard (page 263) item of the Wizards Menu.

Notes on OOBN data file format: Dot notation for class instances

When specifying a data file for an object oriented model, the instance nodes must be prefixed by a class instance name
and a dot.

Example: How would a data file for EM in the Disease object oriented model (from the How to build OOBNs tutorial
(page 55)) look like?

The class for which we are estimating parameters is displayed in Figure 1.

Figure 1: BN for a single time slice of the Diseases problem.

The object oriented model using instances of the class is displayed in figure 2.

Figure 2: Object-oriented network representing the Diseases problem.

The data file header must be structured like this:

© Copyright 2020, HUGIN EXPERT A/S 331

HUGIN Graphical User Interface Documentation, Release 8.9

DiseaseSlice_3.S2, DiseaseSlice_3.S1, DiseaseSlice_3.D2, DiseaseSlice_3.D1, DiseaseSlice_2.S2, DiseaseS-
lice_2.S1, DiseaseSlice_2.D2, DiseaseSlice_2.D1, DiseaseSlice_1.S2, DiseaseSlice_1.S1, DiseaseSlice_1.D2, Dis-
easeSlice_1.D1, DiseaseSlice_1.D2_prev, DiseaseSlice_1.D1_prev

Notice how the the class nodes D1, D2, S1, S2, D1_prev and D2_prev have been prefixed by the class instance names
DiseaseSlice_3, DiseaseSlice_2 and DiseaseSlice_1.

See also description of data files (page 371).

4.7.7 Dynamic Bayesian Network

Dynamic Bayesian (or Belief) Networks (DBNs) are used to model systems that evolve over time. The state of the
system at a single time instant is modeled using an ordinary static Bayesian network. By linking together a number of
these networks, a dynamic model is obtained. The part of the network corresponding to a single time instant is called
a time slice.

When modeling a system that evolves over time, random variables at a given time instant typically depend on the
state of the system at past time instants. In order to specify time dependencies, temporal clones (page 129) can be
constructed for the regular nodes.

Time window

In runmode the DBN is unfolded and the time slices can be navigated through the node list pane (page 227).

332 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Dynamic Bayesian Network in Runmode, time window representing three time slices (T1-T3), node Condi-
tion_prev is temporal clone (page 129) of Condition.

T1-n represents the time slices. T0 represents the temporal nodes prior to T1.

Moving the time window

To move the time window one step forward, click the clock icon inside the move time window button .

It is possible to move the time window an arbitrary number of steps forward. To do this type a number inside the white

text area next to the move time window button, eg. . The mouse pointer must hover over the text field while
editing the number. The maximum possible number of steps is 231-1 but to use numbers larger than a few thousands is
not advisable due to long response times. If the text field is left empty or illegal values are entered, the default behavior
is to move ahead one step.

Evidence for nodes that disappear from the time window become “frozen” (i.e., it cannot be retracted or altered). But
the evidence is not forgotten - it is “incorporated” in the beliefs of nodes in future time slices.

To compute beliefs for nodes in time slices that lie beyond the time window use the DBN prediction (page 137)
function.

© Copyright 2020, HUGIN EXPERT A/S 333

HUGIN Graphical User Interface Documentation, Release 8.9

Dynamic Bayesian Networks with Mixed Variables

All kinds of nodes are allowed in HUGIN DBNs. The DBN may include both discrete and continuous chance nodes as
well as have temporal clones. In this case, the continuous nodes must follow a conditional linear Gaussian distribution,
while both discrete and continuous nodes can have temporal clones (page 129) as demonstrated in the figure below.

Figure 2: Dynamic Bayesian Network with both discrete and continuous nodes.

However, in the case of mixed discrete and continuous nodes, the model can only be compiled using partial Boyen-
Koller approximation, see DBN network properties.

4.8 Data Manipulation

4.8.1 EM Learning

This section describes the feature of using data (i.e., a set of cases) to estimate the conditional probability distributions
and densities when only the graphical structure is given. This is known as batch learning. Note that if the initial
conditional probability distributions and densities are also given, it is still possible to use batch learning.

Batch learning requires that all data are available when the learning process starts, whereas sequential learning allows
the knowledge to be updated incrementally, but sequential learning requires that initial assessments of the conditional
probabilities are given, whereas batch learning only requires the graphical structure. The batch learning method
currently implemented in HUGIN is called EM-algorithm or EM-learning and was developed by Lauritzen (1995)
(page 519); see also the work of Cowel & Dawid (1992) (page 519).

A case is an assignment of values to some or all the nodes of a domain. If values have been assigned to all nodes, the
case is said to be complete; otherwise, it is said to be incomplete. The data used by the learning algorithm is comprised
of a set of cases. The cases are numbered sequentially from 0 to N-1, where N is the total number of cases.

Before learning can take place, in addition to the data set, the set of nodes for which conditional probability distribu-
tions and densities should be estimated must be specified. This set is specified as the set of nodes having experience
tables (described in section Learning - Adaptation (page 228)). The input to the learning algorithm is the cases data;
this set of cases must be non-empty. Note that if the domain is a LIMID model, then the domain’s decision nodes must
be instantiated in all cases.

334 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

The learning algorithm needs to do inference, so the domain must be compiled before the learning algorithm is called.
If successful, the procedure will update the conditional probability (or density) and the experience table for each node
of the domain that has an experience table. Moreover, the inference engine will be reset and use the new conditional
probability (or density).

If the contents of the experience tables are all zeros, then the algorithm will compute the best (“maximum likelihood”)
conditional probability tables and densities, assuming that any table is valid (i.e., there are no restrictions on the form
of the tables). If the contents are not all zeros, then the experience table and the conditional probability tables or
density is used to form counts (“prior counts”) that will be added to those derived from the data set. This is known as
“penalized EM”. If the experience count for a parent configuration is negative, then parameter estimation is disabled
for that parent configuration.

The starting point or the EM algorithm is the conditional probability tables and densities specified prior to calling
the algorithm, assuming that the domain has been compiled with these tables. If no table has been specified for a
discrete node, uniform distributions are assumed whereas initial values for the mean and variances are computed from
the data for a continuous node. Sometimes it is desirable to enforce zeros in the conditional probability tables for the
configurations that should be impossible (i.e., having zero probability).

The EM algorithm performs a number of iterations. For each iteration the logarithm of the probability of the case
data given the current joint probability distribution is computed. This quantity is known as the log-likelihood, and
the EM-algorithm attempts to maximize this quantity. There are two ways in which the number of iterations can be
controlled:

1. A maximum number of iterations can be specified (zero means no maximum).

2. If a maximum number of iterations has been specified and not exceeded, the EM algorithm terminates when the
relative difference between the log-likelihood for two successive iterations is sufficiently small. That is, when
the relative difference between the log-likelihood for two successive iterations becomes less than a tolerance,
which must be a positive number. By default, the value of the tolerance is 104.

To activate EM learning, either press the EM Learning Button (page 155) or select the EM Learning Wizard (page 263)
item of the Wizards Menu (page 179).

See also notes on EM learning in OOBNs (page 330).

4.8.2 Structure Learning

The HUGIN Graphical User Interface provides the user with powerful structure learning capabilities (i.e., learning
the structure of a Bayesian-network model from data (a set of cases)). Structure learning can be performed via the
Learning Wizard (page 249) (which allows data to be read from data files, to be preprocessed, etc.) or by activating
one of the structure learning algorithms directly.

A number of algorithms are available for structure learning: The PC algorithm (page 230), the NPC algorithm
(page 231), the Greedy search-and-score algorithm (page 241), the Chow-Liu tree algorithm (page 237), the Rebane-
Pearl polytree algoritm (page 236) or the Tree Augmented Naive Bayes algorithm (page 237).

See the also Structure Learning Tutorial (page 95) for more information.

© Copyright 2020, HUGIN EXPERT A/S 335

HUGIN Graphical User Interface Documentation, Release 8.9

4.8.3 Auto Filtering (DBN)

With a Dynamic Bayesian network (DBN) loaded HUGIN supports auto filtering from a data file containing a sequence
of observations. This is done using the propagation facility in the data frame (page 373). To perform Auto Prediction
of a DBN start by loading your DBN model. Press Ctrl + O, navigate to the file containing your DBN model and press
‘Open’ and ensure the model is operating in run-mode (page 121).

Figure 1: A DBN Model in run-mode. For this example we have loaded machine_monitoring.oobn and configured it
with 2 time slices (using the Network Properties Panel (page 167)).

By following these links you can read how to:

• open your data file (page 343),

• associate you data file with a run-mode DBN model (page 344),

• point out the Sequence Identifier if you have multiple sequences in you data file, and (page 382)

• convert the data to time windows. (page 345)

When you have completed these steps your data frame should look something like the content in Figure 2. Here the
data file is assumed to contain a single sequence and thus a Sequence Id is not specified.

336 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The content of the data frame when the file machine_monitoring.oobn was loaded and converted to a se-
quence of time windows.

To perform filtering right click on a column header and select ‘Configure batch propagation’ (Figure 3) to access
HUGIN’s Batch propagation configuration menu (page 374) in the data frame.

© Copyright 2020, HUGIN EXPERT A/S 337

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: Select Configure batch propagation to enter the batch propagation configuration dialog.

Navigate to the ‘Predict’ tab, click ‘Add Belief’ and configure a new prediction on the Time slice and Variable you
wish to perform filtering on. For this example, assume you have the model in Figure 1 and you wish to perform
Bayesian filtering on T1.Condition and T2.Condition (states ‘failure 1’ and ‘failure 2’). Then add 2 predictions with
Node=Condition, and states ‘failure 1’ and ‘failure 2’ for time slice 1 and 2 respectively. Eventually, you should obtain
the screen in Figure 5.

338 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: Configure batch propagation by adding 2 predictions on nodes T1.Condition and T2.Condition.

© Copyright 2020, HUGIN EXPERT A/S 339

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 5: The Batch propagation configuration dialog with the filters added.

To propagate the data, right-click on a row header and select “Propagate ALL rows” or “Propagate selected rows”.
To read more about propagation of data in DBN models, click here! (page 351) Answer ‘Yes’ when you are asked
whether the variables should be ignored in the filtering (Figure 7).

340 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 6: Propagate the data by right-clicking on a row header and selecting “Propagate ALL rows”.

Figure 7: Answer ‘Yes’ when you are asked whether the variables should be ignored in the filtering.

You can use HUGIN’s Classifier Performance tool to get an indication of how well the model has performed. Right-
click in a cell and select ‘Classifier Performance’.

Figure 8: To evaluate how well the variable was predicted, right-click in a cell and select ‘Classifier Performance’

• As ‘Actual Class’ select one of the columns you renamed previously to leave them out of the batch propagation.

• As ‘Target Class’ select one of the states in the ‘Actual Class’ column that you just selected.

© Copyright 2020, HUGIN EXPERT A/S 341

HUGIN Graphical User Interface Documentation, Release 8.9

• As ‘P(Target Class’) select the column which contains the propagated belief of the ‘Target Class’ you just
selected.

Figure 9: ROC curve indicating the performance of the Bayesian filter on the node T1.Condition.

4.8.4 Auto Prediction (DBN)

With a Dynamic Bayesian network (DBN) loaded HUGIN has the ability to perform auto prediction from a data file
containing a sequence of observations. This is done using the propagation facility in the data frame (page 373). To
perform Auto Prediction of a DBN start by loading your DBN model. Press Ctrl + O, navigate to the file containing
your DBN model and press ‘Open’ and ensure the model is operating in run-mode (page 121).

342 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: A DBN Model in run-mode.

Now open your data file containing your data sequence. To open a new data frame and load a data file, click in the
menu of the main HUGIN frame File -> Open Data File and select a data file. The file is assumed to be in csv format.

© Copyright 2020, HUGIN EXPERT A/S 343

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The Data sequence loaded in HUGIN’s Data Frame.

Note the auto prediction functionallity is only available in the dataframe if it has been associated with a DBN model
in run-mode!

To associate the data frame with your DBN Model in run-mode (page 121), click the Model menu and then click
Select a Run-Mode Model. A dialog appears, containing all the current project frames to pick from.

Figure 3: To associate the data sequence with the DBN model select ‘Select Run-Mode Model’ form the ‘Model’
menu.

344 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: Pick a project for doing the DBN auto Prediction.

Convert your data file to a sequence of time windows if the data you have loaded is not already in the auto prediction
time window format (page 346). To do this, right click a column header in the data matrix and select Transform to
time slices (DBN only).

Figure 5: Select configure batch propagation (Note: if this option is dimmed out, then switch the associated network
model to run-mode first).

The dialog in Figure 6 will appear asking you how you wish to align your data and whether you wish to keep or replace
the original columns in the dataset.

© Copyright 2020, HUGIN EXPERT A/S 345

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 6: A dialog will appear asking how to align the original data in the time slices and whether the original columns
should be replaced.

When the tool performs a transformation it consults the associated run-mode model when it looks for the following
parameters:

• Time Slices: The number of time slices in the run-mode DBN model determines the time horizon of the trans-
formed data set.

• Node Names: The column headers in the original time series data must be equal to the corresponding the node
names in the run-mode DBN model. Columns without a corresponding node name will be ignored.

Let T be the number of Time Slices configured in the associated run-mode DBN and N be the number of columns
for which the column header equals a node name in the associated run-mode DBN and finally, let the columns in the
original time series data with matching nodes in the associated model be labeled n1, n2, . . . nN. Then the process
generates T * N columns as following: “T1.n1”, “T1.n2”,. . . ”T1.nN”, “T2.n1”,. . . , “TTN”.

The data in each case is transformed from a time series to a sequence of horizon time windows with horizon T.

Thus, if we for instance have a datafile with a time series over the variables A and B as follows:

If the associated run-mode model is a DBN with 2 time slices over the variables A and B, the conversion produces:

• If “Align at Start” has been choosen:

346 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• If “Align at End” has been choosen:

The result of the transformation in the machine_monitoring.dat and machine_monitoring.oobn files which can be
found in the example folder is outlined in Figure 7.

Figure 7: Outline of the result from transforming machine_monitoring.dat with machine_monitoring.oobn loaded as
DBN run-mode model.

To configure which variable to target for prediction right-click on a column header in the data frame window and select
‘Configure batch propagation’.

© Copyright 2020, HUGIN EXPERT A/S 347

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 8: Select ‘Configure batch propagation’ in the table header menu in order to specify which variables to predict.

In the Select Nodes dialog navigate to the ‘Predict’ tab and click ‘Add Prediction’ to specify a new variable for
prediction.

Figure 9: Click ‘Add Prediction’ to specify a new variable for prediction.

In the ‘Add Prediction’ dialog, specify which variable and which timeslot you wish to predict.

348 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Discrete valued chance nodes, Continuous chance nodes, Discrete Function Nodes, and Continuous Function Nodes
can be selected for prediction.

Figure 10: Select time slice, node and states which should be marked for prediction.

When a variable has been selected, further parameters can be selected for the prediction. If the node is a discrete
chance node or a discrete function node the desired states can be marked for prediction. To mark all states select the
variable twice in the ‘Select Node’ drop down menu.

Note: As soon as you click ‘OK’ your choices will be stored in the dataframe. A new column will be added for each
selected state. (See ‘How Predictions are stored in the dataframe’ (page 350) to understand how this works).

Figure 11: Press ‘OK’ to store your selection and corresponding columns will be added to the data frame.

You can add as many Prediction elements as you want. If you add a new prediction element with the same variable
and time slice as an existing prediction element the selected states will be ‘absorbed’ by the existing element and a
new element will not be added to the list but new columns will be added for each new selected state (See ‘Predictions
are stored in the dataframe’ (page 350)).

© Copyright 2020, HUGIN EXPERT A/S 349

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 12: You may add as many prediction elements as you like. The predictions you select are immediately added
as new columns in the data frame.

Predictions are stored as columns in the dataframe. Assume that each individual state s1 , s2 , . . . sn for node N in
timeslot t are marked for predicition using the ‘Add Prediction’ dialog. Then a columns with a headers [Tt]P(N=s2),
[Tt]P(N=s2),. . . [Tt]P(N=sn) are added to the data in the data frame.

An example excerpt of the the machine_monitoring.dat and machine_monitoring.oobn examples from the HUGIN
Example folder with states selected for prediction is outlined in Figure 13.

350 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 13: An example excerpt of the the machine_monitoring.dat and machine_monitoring.oobn examples from the
HUGIN Example folder with states selected for prediction.

To perform the propagation of the selected timeslots, variables and states right click on a row-header and you now
have two possibilities:

• Select either ‘Propagate selected rows’ to propagate either the selected row or a subset of rows in sequence.
Prior to this choice, the rows you wish to propagate must be selected with the mouse: Hold down left mouse
button over the first or last row you wish to select and pull either up or down,

• or select ‘Propagate ALL rows’ to propagate all cases stored in the data frame in sequence.

Note: The order in which the rows are propagated matters. Each time a row is propagated, the time window offset
is advanced with 1 time step in the associated run-mode DBN model and all evidence will be accumulated. This

corresponds with entering the evidence in the model window and pressing (move time window) which
will affect the result of all subsequent propagations. If you start a propagation of any number of rows and the time
window offset is not 0 you will see the warning in Figure 16 but the system will proceed with the prediction. This
allow interleaved batch propagation of subsets of cases in the data frame and manual interaction with the model for
inspecting the propability distributions in the model at a particular state.

If this is not desired, it is highly recommended to press (compile) which will reset the time window offset to 0
and then use the ‘Propagate ALL rows’ option.

© Copyright 2020, HUGIN EXPERT A/S 351

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 14: The recommended way to perform propagation is to press (compile) in the run-mode DBN model
which will reset the time window offset to 0 and then use the ‘Propagate ALL rows’ option.

During the batch propagation you will see the progress. To stop the propagation simply close the progress window.

Figure 15: The progress window shown during the batch propagation. To stop the propagation simply close the
progress window.

Figure 16: If you start to propagate a number of rows and the time window offset is not in state 0 you will see this
warning but the propagation will proceed as soon as you press ‘Yes, Continue!’.

The propagated values will be written to the respective cells in the data matrix.

352 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 17: The propagated probabilities will be written to the cells in the data frame. Cells will be overwritten when
the rows are propagated again.

To Evaluate a prediction HUGIN’s Data Processing Tool (page 390) and HUGIN’s Data Classifier Performance Tool
(page 403) can be used. First the rows containing the true future values must be aligned with the prediction in the data
set. This can be obtained using HUGIN’s Data Processing Tool (page 390) .

To align the rows containing the true future values with the predictions open the Data Processing Tool by right
clicking on a column header in the data frame and select Data Processing (Fig. 18).

Figure 18: To open the Data Processing Tool right click on a column header and select Data Processing.

When The Data Processing Tool appears press ‘+’ to create a new Data Processor. You can edit the Data Processor
directly in the Details section in the dialog window below.

© Copyright 2020, HUGIN EXPERT A/S 353

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 19: The Empty Data Processing Tool. Press ‘+’ to create a new Data Processor. You can edit the Data Processor
directly in the Details section in the dialog window below.

Assume you have a runtime model and a dataset with 3 time slices (i.e. T1, T2 and T3) and you have added a prediction
on a variable in the future time slice T4. To align the true future data with the predictions in T4 you wish to copy the
data in the T1 columns and shift them 4 cells up. The following 2 Data Processor Descriptions can obtain this when
run in sequence:

To clone all columns in time slice T1 (T1.A, T1.B,. . .) and name them with prefix “eval-T4-“ (eval-T4-T1.A, eval-
T4-T1.B, . . .) use the following data processor description:

COLUMN_CLONE
SELECT T1.*
eval-T4-

To obtain this, press ‘+’, select ‘<Empty Data Processor Template>’ and enter the above text in the Details section. To
shift all columns with prefix “eval-T4-“ 4 cells up use the following data processor description:

COLUMN_SHIFT
SELECT eval-T4-.*
4
UP

To obtain this, press ‘+’, select ‘<Empty Data Processor Template>’ and enter the above text in the Details section.
When you have entered both data processing descriptions you should see something like Figure 20 where the 2 new

354 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

data processors are listed.

Figure 20: The Data Processing Tool with the 2 above processors entered.

To run the data processors select the two processors by holding down the CTRL key while selecting them in the list
and press ‘Run Selected’. If it ran successfully you should obtain the dialog in Figure 21. You can now close the Data
Processing Tool and verify that the columns should have been added and shifted as requested (See Figure 22).

© Copyright 2020, HUGIN EXPERT A/S 355

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 21: You should see this information .

356 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 22: The columns have been cloned and shifted such that the predicted values are aligned with the actual future
values.

The predictions can be evaluated using the HUGIN’s Data Classifier Performance Tool (page 403). To open this tool
right click one of the cells in the Data Frame and select ‘Classifier Performance’ as shown in Figure 23. This shoul
open the Classifier Performance Tool shown in Figure 24.

© Copyright 2020, HUGIN EXPERT A/S 357

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 23: Right click on a data cell and select ‘Classifier Performance’ to evaluate the prediction.

358 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 24: The Classifier Performance Tool. The tool is configured by selecting the three evaluation parameters in the
bottom of the window.

Configure the classification by selecting values for the three parameters at the bottom of the Classifier Performance
window:

• Actual Class: Select the column containing the actual future value. Assume we wish to evaluate the per-
formance of the prediction labelled “[T4]P(Condition=failure1)” and that we have used the data proces-
sors described above. Then the column labelled “eval-T4-T1.Condition” contains the actual values that
“[T4]P(Condition=failure1)” predicts.

• Target Class: Select the state that the prediction we are evaluating predicts. If we are evaluating
“[T4]P(Condition=failure1)” then select “failure1”.

© Copyright 2020, HUGIN EXPERT A/S 359

HUGIN Graphical User Interface Documentation, Release 8.9

• P(Target Class): Select the column containing the prediction. In this case select “[T4]P(Condition=failure1)”.

The result of this configuratin is shown in Figure 25. The ROC curve appears as soon as the last value is selected.

If you need to see more details about the prediction, navigate to the “Confusion Matrix” tab to see a count of false
positives and false negatives and other relevant parameters (See Figure 26).

Figure 25: The resulting ROC Curve indicating the performance of the prediction.

360 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 26: The confusion matrix for the prediction.

© Copyright 2020, HUGIN EXPERT A/S 361

HUGIN Graphical User Interface Documentation, Release 8.9

4.8.5 Leave One Out Propagation

Leave-One-Out Propagation is propagation provided within the the Data Matrix (page 411) tool that allows to perform
N-fold Cross Validation where N is the number of cases in the data set used for evaluation of a model.

Requirements

Before the functionality is available the data set must be associated with a compiled network with at least one node
with experience tables.

Concepts

Leave-One-Out Propagation works in the following way:

• A data set D with cases r1, r2, . . . , rn.

• A Bayesian Network M over the nodes C. Let C’ ⊆ C be a set of nodes which have experience tables.

• For each row i, HUGIN uses the EM-algorithm to learn a model M_i in which the CPTs for C’ are learned from
the cases r1, r2,. . . ,ri-1, ri+1,. . . .,rn

• Enter the evidence of row ri into M_i and propagate to obtain the desired beliefs.

The desired beliefs are specified in the ‘Configure Batch Propagation’ dialog window.

The rest of this manual page will be a walk through of how to obtain this functionality.

Loading the Bayesian network and Data file

Press Ctrl + O, navigate to the file containing your model and press ‘Open’. If you have not already added Experience
tables to the nodes you wish to learn, see Adding experience tables (page 367). Compile the model to enter run-mode
(page 121).

The next step is to open a data file in the Data Frame. By following these links you can read how to:

• open your data file (page 343)

• associate you data file with a run-mode model, and (page 344)

• convert the data to time windows (if using a DBN Model) (page 345).

Configuring Leave-One-Out propagation

After having performed the above steps, right-click on a column header in the data frame window and select ‘Configure
batch propagation’ (See Figure 1).

362 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Right-click on a column header in the data frame window and select ‘Configure batch propagation’ to enter
the Batch Propagation Dialog.

Mark nodes for classification

Navigate to the ‘Classify/Learn’ tab, click ‘Classify Node’ to configure a node as target for learning and evaluation.
The effect of doing this is that the column representing the selected variable will obtain the prefix “[C]” which indicates
to the propagation algorithm that data from this coulumn will be included while learning M_i but will not be included
while performing the propagation of the data in row i.

If the class variable is not marked, the class variable will be included in the propagation of M_i with row i which
results in a wrong evaluation of the classifier.

Figure 2 and Figure 3 shows the dialog for marking a node for classification. Any number of nodes can be marked.

© Copyright 2020, HUGIN EXPERT A/S 363

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Navigate to the ‘Classify/Learn’ tab.

364 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: Click ‘Classify Node’ to mark a node as target for learning and evaluation.

Configure the class variable for monitoring

Navigate to the ‘Beliefs’ tab, click ‘Monitor Node’ to configure a node for monitoring of its beliefs during the propa-
gation.

The effect of doing this is that a number of columns (one column for each selected state) will be added to the data set
which will contain the beliefs for the variable being in that state.

© Copyright 2020, HUGIN EXPERT A/S 365

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: Navigate to the ‘Beliefs’ tab, click ‘Monitor Node’ and select the state for monitoring. Select the node twice
in the ‘Select Node’ dropdown bar in order to mark all states for monitoring.

The nodes selected for monitoring will be listed in the pane. Add as many nodes for monitoring as you wish.

366 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 5: The nodes marked for monitoring are listed. Add as many as you like.

Adding Experience Tables

Experience tables can be added to nodes when the network is in edit mode.

Right-click on the node, select ‘Experience/Fading table operations’ and select ‘Add Experience Table’. (See Figure
6.)

© Copyright 2020, HUGIN EXPERT A/S 367

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 6: Adding an experience Table.

As initial parameters for the experience table we have here selected ‘User defined value’ and experience count 25.
That means that the initial distribution on the nodes will have a weight as if it was based on 25 observations.

Figure 7: Set initial parameters for experience table.

Add experience tables to all nodes for which you wish to learn the CPT. In order to perform Leave-One-Out cross
validation propagation at least one node must have experience table.

368 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Perform Leave-One-Out-Propagation

Close the ‘Select Nodes’ window, right-click on a row-number and select ‘Leave-One-Out Propagate ALL rows’ in
order to start the propagation.

Figure 8: Start the propagation.

Inspect and evaluate the propagated result The propagated beliefs should now be placed in the data matrix. The data
can be saved to a file or the Classifier Performance tool (page 343) can be used to evaluate the classifier performance.

© Copyright 2020, HUGIN EXPERT A/S 369

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 9: Inspect the propagated beliefs in the data matrix, and use the Classifier Performance tool to evaluate the
classifier performance.

4.8.6 Case Files

The HUGIN Graphical User Interface supports saving and loading of case files. A case file contains a description of a
single evidence scenario. Figure 1 shows a sample case file.

Figure 1: A sample case file.

As indicated in Figure 1, each line of a case file contains information about the evidence for a single variable. In
general, each line of a case file must obey the following syntax:

<variable name>: <value> [% <comment>]

where

370 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

<value> : \:= "<state label>" | true | false | <number> | #<state index>

The choice of syntax for <value> depends on the category (page 196) and type (page 201) of the variable/node. For
labeled nodes <value> must be specified using the “<state label>” syntax. For Boolean nodes <value> must be either
‘true’ or ‘false’. For numbered nodes or continuous chance nodes (page 209) <value> must be a number (e.g., 1, -4.2).
For interval nodes <value> must be specified as #i, where i is the index of the state in question (the first state has index
0).

A case file can be generated via the “Save Case. . . ” item of the File Menu (page 179) whenever the HUGIN Graphical
User Interface is in Run Mode (page 121) and evidence has been entered. Similarly, in Run Mode (page 121), a case
can be loaded via the “Load Case. . . ” item. Please note that possible evidence already entered is removed when a case
is loaded.

4.8.7 Data Files

The HUGIN Graphical User Interface supports saving and loading of data files. A data file contains a set of cases as
this

Figure 1: A sample data file.

Figure 2: Another sample data file.

As indicated in Figure 1, the first line is the name of the nodes as in the network whereas each of the following lines
specify a case in which each variable is assigned a value, i.e., a set of observations with one observation for each node.
An observation may missing in a case. A missing value is specified using N/A.

Notice that the first line of the data file always contains the names of a (subset) of the nodes in the network. It is
important to specify the name and not the label of nodes. The name is a unique identifier for each node. Thus, the

© Copyright 2020, HUGIN EXPERT A/S 371

HUGIN Graphical User Interface Documentation, Release 8.9

data file in Figure 1 assumes that the network has nodes with names E, T, L, S, A , D, B and X. This could be the node
names of the network shown in Figure 3 (where node labels are shown in the nodes.)

Figure 3: Bayesian-network representation of “Chest Clinic”.

See also notes on data files for OOBN EM (page 330).

The format of a data file can be described by the following grammar:

<Data file> ::= <Header> <Case>*
<Header> ::= # <Separator> <Node list> | <Node list>
<Separator> ::= , | <Empty>
<Node list> ::= <Node name> | <Node list> <Separator> <Node name>
<Case> ::= <Case count> <Separator> <Data list> | <Data list>
<Case count> ::= <Nonnegative real number>
<Data list> ::= <Data> | <Data list> <Separator> <Data>
<Data> ::= <Value> | N/A | <Empty>
<Value> ::= <State index> | <Label> | <Real number> | true | false
<State index> ::= #<Integer>

Where:

• The <Header> must occupy a single line in the file. Likewise, each <Case> must occupy a single line.

• If # is the first element of <Header>, then each <Case> must include a <Case count>.

• Each <Case> must contain a <Data> item for each node specified in the <Header>. The ith <Data> item (if it
is a <Value>) in the <Data list> must be valid for the ith node in the <Node list> of the <Header>.

• If <Data> is *, ?, or <Empty>, then the data is taken as ‘missing’.

• If <Separator> is <Empty>, then none of the separated items is allowed to be <Empty>.

• <Value> is as defined in Section 8.8, with the exception that <Likelihood> is not allowed.

• <Real number> is a valid specification for CG, numbered, and interval nodes. For numbered and interval nodes,
the acceptable values are defined by the state values of the named node.

372 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• <Label> is a valid specification for labeled nodes. The label (a doublequoted string) must match a unique state
label of the named node. Quotes can be omitted if the label is a single word.

• *true* and *false* are valid specifications for boolean nodes.

4.8.8 Case Generator

Based on the current conditional probability distribution the HUGIN Graphical User Interface can generate cases and
save these into a file.

Cases can be generated in two different ways: MCAR (Missing Completely at Random) or MAR (Missing at Random).

MCAR sets some values to N/A by removing values of some nodes in the generated case set randomly (i.e., MCAR
considers all the values in the generated cases and not one case at a time).

MAR randomly sets some values in a case to N/A based on auto-generated templates. These templates specify that
if some nodes have a specific value, then the values of a subset of the nodes are randomly set to N/A. Note that the
specification of the templates is generated randomly.

In both cases the conditional probability distribution is considered as a factor to the number of cases generated with a
specific set of observations. Also in both MCAR and MAR it is possible to indicate the percentage of missing values.
To activate the case generator, the Case Generator Button (page 155) may be used.

4.8.9 Data Frame

HUGIN can load a data file as a project frame, the data frame. Data files can be inspected, manipulated and analyzed
as the contents of the data frame is a data matrix (page 411) with additional functionallity for performing batch
propagation in run mode (page 121) models.

To open a new data frame and load a data file, click in the menu of the main HUGIN frame File -> Open Data File
and select a data file.

© Copyright 2020, HUGIN EXPERT A/S 373

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Typical data frame - A data frame containing a data file for the chest clinic model with only symptom
observations.

To configure a data frame for batch propagation, we must first load a network model and set the model to run mode
(page 121) (Note. batch propagation functionallity is only available for models in run-mode!).

Then in the data frame, click the Model menu and then click Select a Run-Mode Model. A dialog appears, containing
all the current project frames to pick from.

Figure 2: Pick a project for doing batch propagation.

When a run mode (page 121) model has been configured for the data frame, we can configure the batch propagation
options. To do this, right click a column header in the data matrix and select the Configure batch propagation option.

374 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: Select configure batch propagation (Note: if this option is dimmed out, then switch the associated network
model to run-mode first).

This produces a dialog where we can configure what information to record during batch propagation. The information
recorded depends on the node type:

• Discrete nodes - posterior beliefs for each state

• Continuous nodes - the mean or the variance.

• Function nodes - the function value

• Utility nodes - the expected utility

To add a node for recording, click the ‘Monitor Node’ button and the ‘Monitor Node’ dialog appears.

© Copyright 2020, HUGIN EXPERT A/S 375

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: Pick any nodes we wish to record beliefs for and then close the dialog - in this example the nodes from the
chest clinic model that represents the diagnosis.

In the ‘Monitor Node’ dialog select a node from the drop down menu. If the selected node is a Discrete Chance
Node, select the states you wish to monitor. If the selected node is a Continuous Chance Node, select mean(𝜇) and/or
variance (𝜎2). Click the ‘OK’ button to add the node to the list of nodes selected for monitoring.

376 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 5: Pick any nodes we wish to record beliefs for and then close the dialog - in this example the nodes from the
chest clinic model that represents the diagnosis.

The nodes selected for monitoring will be listed. Note that if the same node is selected twice it will only appear once
in the list as it would otherwise result in duplicate columns in the data set. If a node is selected twice a state which
was not previously selected is selected, it will be added to the existing row representing that node.

© Copyright 2020, HUGIN EXPERT A/S 377

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 6: Pick any nodes we wish to record beliefs for and then close the dialog - in this example the nodes from the
chest clinic model that represents the diagnosis.

Depending on the nodes selected, a number of extra columns appear to the data matrix. The information recorded in
the column depends on the column name.

378 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 7: Extra columns appear for recording information when a row (a case) is propagated.

In addition to using the above dialog, it is possible to add the columns by hand and specify the appropriate column
header to obtain the desired results. There are options to manually specify that the propagate operation should report
the probability of a state with maximum probability ([MAX](P(X))) for a discrete chance node, a state with maximum
probability ([ARGMAX](P(X))), mean ([MEAN(X)), median ([MEDIAN](X)), quantile ([Qy](X) where 0 < y < 100)
and coefficient of variance ([CoV](X)) of a numeric discrete node where the format of the column header is shown
in parentheses for node X. For instance, to report the mean of X, the column header should be [MEAN](X), to report
the coefficient of variance the header should be [CoV](X) and to report the 95 percent quantile the header should be
[Q95](X).

To propagate a single row (a case), double click on the row header for the particular row. Alternatively, right click on
the row header and select ‘Propagate selected rows’ in the row header menu.

© Copyright 2020, HUGIN EXPERT A/S 379

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 8: Right-click the row header to enter the row header menu where it is possible to propagate a selected set of
rows. Alternatively, to propagate a particular row, double click on the row header for that row.

Rows can also be propagated in batch by selecting a number or rows, right-clicking the row header and choose prop-
agate selected rows. Or just right-clicking the row header and choosing propagate ALL rows. When rows are being
propagated in batch, a dialog appears displaying the status of the batch propagation job.

Figure 9: Batch propagation job status.

When the batch propagation job completes, information have been recorded for all rows that could be inserted and
propagated in the network model.

380 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 10: All rows has been propagated and information recorded.

4.8.10 Data Sequences in HUGIN

Since HUGIN version 8.3 the data frame HUGIN has had support for data in sequences (or time series). When the
associated runtime domain is a DBN-model HUGIN already assumes that the Data set is a sequence of observations.
However, if the data file contains multiple sequences then each sequence must have a sequence id (SID). The SID is a
column in the data set with with text identifiers that are the same for all observations belonging to the same sequence.
For SIDs you must be aware of the following properties:

• All observations belonging to the same sequence must be organized in sequence in the data set. As soon as a
new SID is observed, it HUGIN assumes that a new sequence begins.

• SIDs are not required to be unique throughout the data set. If two sequences share a SID they will be treated as
different sequences.

The use of a Sequence Identifier has impact on how many things work throughout the data frame. Here is a list of
some of the functions it influences:

• Data Propagation: In batch propagation mode, HUGIN resets the time window back to 0 and reinitializes the
domain each time a SID is not similar to the SID of the previous case.

• Transform to time slices: Transformation of a dataset into time slices transforms sequence by sequence in stead
of entire data set.

© Copyright 2020, HUGIN EXPERT A/S 381

HUGIN Graphical User Interface Documentation, Release 8.9

• Transform data sequences to cases for learning: Possibility to transform a set of sequences into a dataset
containing one row for each sequence. The number of columns will be the number of cases in the longest
sequence times the original number of columns.

Get ready

By following these links you can read how to:

• open your data file (page 343),

• associate your data file with a run-mode DBN model, and (page 344),

• convert the data to time windows (page 345).

Pointing out the SID column

To point out the SID column in a data set with multiple sequences right click on the column containing the sequence
identifiers (See Figure 1).

Figure 1: Right-click on the column and select “Mark as Sequence id” to mark a column as SID.

Once the SID column has been pointed out, or whenever an new SID column is choosen a dialog box appears with
statistics on the sequences found in the data set (See Figure 2).

382 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Once a new SID has been selected, a dialog appears with some statistics on the observed sequences.

Once the SID column obtains a “[sid]” tag which indicates that the column is the SID (See Figure 3). The data set can
be saved with the SID choosen and once it is re-loaded HUGIN will read the tag and know that it is the SID.

Figure 3: The appended “[sid]” tag on the column name tells HUGIN that the column is the SID.

Transform Sequences to cases for learning

Once the SID column has been pointed out, the option “Transform dataset to cases for learning” becomes available (See
Figure 3). This option transforms the dataset into a new dataset in which each sequence is represented as individual
cases. The number of columns will correspond to the original number of columns times the number of observations in
the longest sequence.

© Copyright 2020, HUGIN EXPERT A/S 383

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: As soon as a column has a “[sid]” tag it is possible to transform the dataset to a dataset containing a row for
each sequence.

Figure 5: Choose whether to align the data to the right or to the left and whether to cut away columns with lowest or
highest time label respectively.

The transformed dataset opens in a new data frame (See Figure 6). The data set can now be inspected, propagated or
saved and opened using the Learning Wizard (page 249).

384 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 6: The transforme dataset will open in a new frame.

Classifier Performance on Sequences

With a SID column, the Classifier Performance tool has been extended with ability to evaluate classification of se-
quences. In this tool, sequences are assumed to appear in sequence and not as individual cases as above. The Classifier
Performance tool is accessed by right-clicking on a cell in the data matrix and then selecting “Classifier Performance”.

In the “Multistate Classifiers” tab notice that the “Configure Sequences” button is now visible. It becomes visible
when a SID column is selected on the dataset (See Figure 7).

© Copyright 2020, HUGIN EXPERT A/S 385

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 7: In the Classifier Performance tool, Multistate Classifiers tab, the “Configure Sequences” button is visible
when operating with data sequences.

Under “Actual Class” select the column containing the actual class in the data set (See Figure 8). As soon as a column
is selected HUGIN tries to “guess” the columns containing the probabilities of each states. HUGIN’s guess can be
reviewed and modified in the “Columns with State probabilities” panel. The guess is based on a penalizing algorithm
that assigns lowest penalty to columns with names matching “P([.]?=StateName from Actual Class)”, where [.]? is
any pattern containing at least 1 character. Arbitrary text can be appended, but it will increase the penalty.

386 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 8: When a class has been selected, HUGIN attempts to auto fill out the columns in “Columns with state
probabilities”.

The classification evaluation method can be configured under “Configure Sequences”. Here there are 2 options:

• Use Threshold: Classification mode that assigns the sequence to a class as soon as the probability of one class
anywhere in the sequence is above a selected threshold (See Figure 9).

• Use Last Case: Classification mode that considers the state probabilities of the last case in the sequence only
(See Figure 10).

© Copyright 2020, HUGIN EXPERT A/S 387

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 9: The transforme dataset will open in a new frame.

Figure 10: The transforme dataset will open in a new frame.

Click on “Calculate” to calculate the result. The text in the frame explains what the evaluation has counted. Notice
that you may need to scroll in order to read all results and be aware that not all data may be included in the confusion
matrix. The latter is due the the possibility of a sequence belonging to multiple classes. Such cases are summed up in
the results below the confusion matrix.

388 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 11: The transforme dataset will open in a new frame.

A click on the button “Analyze Result” will open a new dataframe containing the data used for the construction of
the confusion matrix and the count of multi-classifications. This dataset is opened in a new frame. It contains the
following columns:

• Sequence id

• Sequence index in original data set

• Sequence’s true class

• List of classes the particular sequence was assigned to

• For each class C, the relative index in the sequence where the sequence was recognezed as belonging to C.

© Copyright 2020, HUGIN EXPERT A/S 389

HUGIN Graphical User Interface Documentation, Release 8.9

4.8.11 Data Processing

Data Processing is the task of applying a set of transformations to the data items in a data set. Data Processing
functionallity is available using the data processing tool, which can be launched from the right-click context menu in
the data matrix.

The information used to perform a transformation is called a data processor description. Using the data processing
tool, one can define data processors as well as applying them. The tool supports loading and saving data processor
descriptions, which is useful for dealing with different data sets that require the same transformations to be usable in
HUGIN.

The data processing tool is displayed

Figure 1: The data processor tool - a number of data processor descriptions has been loaded. The top half of the
window contains a list of data processors. When a data processor is selected, the description can be edited in the
details text field located in the bottom half of the window.

Use the function buttons ‘+’ and ‘-‘ to create and delete data processors and the arrow buttons (N and H) to rearrange
currently selected data processors. Use the load and save buttons to store data processor descriptions in files. One has
the option to save all data processors or only selected when clicking the save button, see Figure 2.

390 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Save all or selected data processors

Use the ‘Verify Selected’ button to get an overview of possible problems with the selected processors and use the
‘Preveiw Selected’ button to see the result of the currently selected processors on the first 200 rows. It is recommended
to use these tools before applying a data processor, to see how it performs. Click the ‘Run Selected’ button to apply a
data processor.

Data Processor Descriptions

A data processor description is a list of text lines, containing three pieces of information: the data processor type, a
column specifier and any parameters for the data processor:

<data processor type>
<column specifier>
<argument>*

The data processor type can be one of:

REPLACE
REPLACE_REGEX
TO_UPPER
TO_LOWER
DISCRETIZE_MANUAL
DISCRETIZE_EQUAL_DISTRIBUTION
DISCRETIZE_IEM
COLUMN_DELETE
COLUMN_CREATE
COLUMN_CLONE
COLUMN_SHIFT

The column specifier can select a single column based on the column name:

NAME <column name>

Or a set of columns where the column names matches a regular expression (regular expressions described further
below):

SELECT <regular expression>

The arguments depend on the chosen data processor type:

• REPLACE:

<match text string>
<replacement text string>

• REPLACE_REGEX:

© Copyright 2020, HUGIN EXPERT A/S 391

HUGIN Graphical User Interface Documentation, Release 8.9

<regular expression>
<replacement text string>

• TO_UPPER: none

• TO_LOWER: none

• DISCRETIZE_MANUAL: The intervals, specified as a list of interval boundaries:

<lower bound first interval>
<upper bound previous interval/lower bound next interval>*
<upper bound last interval>

• DISCRETIZE_EQUAL_DISTRIBUTION: The number of target intervals:

<number of states>

• DISCRETIZE_EQUAL_DISTRIBUTION: The number of target intervals:

<number of states>

• DISCRETIZE_IEM

<column name>

• COLUMN_DELETE: none

• COLUMN_CREATE: none

• COLUMN_CLONE

<new column name or prefixes>

• COLUMN_SHIFT

<rows to shift>
<direction to shift>

Regular expressions

A regular expression is a pattern used to match a sequence of characters. The pattern matching rules used in HUGIN
follow the java regular expressions pattern matching from java.util.regex.Pattern8.

A summary of selected regular-expression constructs:

Characters

x The character x
\\ The backslash character

Character classes

[abc] a, b, or c (simple class)
[^abc] Any character except a, b, or c (negation)
[a-zA-Z] a through z or A through Z, inclusive (range)
[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)

8 http://docs.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html

392 © Copyright 2020, HUGIN EXPERT A/S

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html

HUGIN Graphical User Interface Documentation, Release 8.9

Predefined character classes

. Any character
\d A digit: [0-9]
\D A non-digit: [^0-9]
\s A whitespace character: [\t\n\x0B\f\r]
\S A non-whitespace character: [^\s]
\w A word character: [a-zA-Z_0-9]
\W A non-word character: [^\w]

Greedy quantifiers

X? X, once or not at all
X* X, zero or more times
X+ X, one or more times

Logical operators

XY X followed by Y
X|Y Either X or Y
(X) X, as a capturing group

The backslash character (‘’) serves to introduce escaped constructs, as defined in the table above, as well as to quote
characters that otherwise would be interpreted as unescaped constructs. Thus the expression \ matches a single back-
slash and { matches a left brace.

Examples of regular expressions:

[n].* Match any string that begins with the character 'n', e.g. 'not',
→˓'nothing' etc.
\d+(\.\d*)? Match any string that is a number, on the form 1 or 1.234 etc.

Creating a Data Processor

Click the ‘+’ button to create a new data processor, the dialog in Figure 3 appears.

Figure 3: Select a data processor type

• To manually enter a data processor description, choose the empty template.

• To create a new data processor using a guided approach, select any of the data processor types.

© Copyright 2020, HUGIN EXPERT A/S 393

HUGIN Graphical User Interface Documentation, Release 8.9

The guided approach consists of a sequence of questions and finally automatic generation of the resulting data pro-
cessor description. After choosing a data processor type, one must select a target column in the data set. See Figure
4.

Figure 4: Select target column for the new data processor

Data Processor: Replace

This data processor replaces any data items that matches a specific text string, with a replacement text string. The
REPLACE data processor takes two parameters, the text string to match and the replacement text string.

REPLACE
NAME <column-name>
<match text string>
<replacement text string>

When creating the data processor using the guided approach, specify parameters in the dialogs in Figures 5 and 6.

Figure 5: Enter the text string that should be replaced - any data items that matches the string ‘value’ will be replaced

Figure 6: Enter the replacement text string - replace any data items that matches ‘value’ with ‘val’

394 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Data Processor: Regular expression replace

This data processor is similar to the normal REPLACE data processor, except that data items are matched using a
regular expression instead of a fixed text string. The REPLACE_REGEX data processor takes two parameters, the
regular expression used to select matching data items and the replacement text string.

REPLACE_REGEX
NAME <column-name>
<regular expression>
<replacement text string>

When creating the data processor using the guided approach, specify parameters in the dialogs in Figures 7 and 8.

Figure 7: Enter a regular expression that matches the desired data items - this regular expression matches any data
item that begin with a lower- or uppercase n

Figure 8: Enter the replacement text string - replace any data items that matches the regular expression with ‘no’

Data Processor: Upper case

This is a very simple data processor, which converts any lower case characters to upper case. The TO_UPPER data
processor has no parameters.

TO_UPPER
NAME <column-name>

© Copyright 2020, HUGIN EXPERT A/S 395

HUGIN Graphical User Interface Documentation, Release 8.9

Data Processor: Lower case

This is a very simple data processor, which converts any upper case characters to lower case. The TO_LOWER data
processor has no parameters.

TO_LOWER
NAME <column-name>

Data Processor: Manual Discretization

This data processor applies a discretization to all data items. The DISCRETIZE_MANUAL data processor takes a
variable number of parameters, namely target intervals specified as a list of interval boundaries:

DISCRETIZE_MANUAL
NAME <column-name>
<lower bound first interval>
<upper bound previous interval/lower bound next interval>*
<upper bound last interval>

When creating the data processor using the guided approach, the discretization tool (page 415) is spawned to aid
specifying the intervals.

Data Processor: Equal Distribution Discretization

This data processor applies a discretization to all data items. The target intervals are dynamically generated based on
all the numeric data items in the column, such that each interval contain approximately the same number of data items.
The DISCRETIZE_EQUAL_DISTRIBUTION data processor takes a single parameter, the number of target intervals.

DISCRETIZE_EQUAL_DISTRIBUTION
NAME <column-name>
<number of states>

When creating the data processor using the guided approach, specify parameters in the dialog in Figure 9.

Figure 9: Specify the number of intervals

Depending on how well the data values are scattered, the number of intervals may be pruned in order to make the
resulting intervals equally distributed.

396 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Data Processor: Information Entropy Minmization Discretization

This data processor applies a discretization to all data items. Target intervals are generated that minimizes entropy in
an other discrete column (the target column). The DISCRETIZE_IEM data processor takes a single parameter, the
target column on which to minimize the entropy (discrete valued).

DISCRETIZE_IEM
NAME <column-name>
<target column>

When creating the data processor using the guided approach, the target column is selected in the dialog in Figure 10.

Figure 10: Specify the target column on which to base the entropy minimization discretization.

Data Processor: Delete Column

This data processor deletes one or more columns. The COLUMN_DELETE data processor deletes a single column
when a named column is specified or it deletes multiple columns that matches a pattern if a SELECT clause is used.

COLUMN_DELETE
NAME <column-name>

Data Processor: Create Column

This data processor creates a new empty column. The COLUMN_CREATE data processor creates a single column
with the specified name. The create data processor cannot be combined with a SELECT clause.

COLUMN_CREATE
NAME <column-name>

Data Processor: Clone Column

This data processor clones one or more columns. The COLUMN_CLONE data processor takes a single parameter,
which determines the name of the clones. When COLUMN_CLONE is combined with at SELECT clause the param-
eter is used as a prefix on the new names of the cloned columns. Otherwise the parameter is the name of the cloned
column.

COLUMN_CLONE
NAME <column-name>
<new column name or prefixes>

© Copyright 2020, HUGIN EXPERT A/S 397

HUGIN Graphical User Interface Documentation, Release 8.9

When creating the data processor using the guided approach, the column to clone is selected in the dialog in Figure 11
while its name is specified in the dialog in Figure 12.

Figure 11: Specify the column to clone.

Figure 12: Specify the name of the cloned column.

Data Processor: Shift Column Cells

This data processor shifts the cells of or more columns a specified number of cells up or down. A COLUMN_SHIFT
data processor takes two parameters. The first determines the number of rows to shift the cells while the second
determines whether to shift the cells up or down. When using the guided approach, the system asks how many rows
to shift the cells down. However, by specifying a negative number the cells can be shifted up.

COLUMN_SHIFT
NAME <column-name>
<Number of rows (any integer in the interval]-∞, ∞[) >
<UP or DOWN>

When creating the data processor using the guided approach, the number of rows to shift the column is selected in the
dialog in Figure 13.

Figure 13: Specify the number of rows to shift the selected column.

398 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Selecting Data Processors

A Data Processor is selected by clicking on its description in the ‘Select Data Processors List. Multiple data processors
can be selected by holding down the CTRL key while selecting data processors from the list. Note that when multiple
data processors are selected, they will be processed in the order they appear in the list from top to bottom. Remember
that the arrow buttons (N and H) allow you to rearrange data processors in the list.

Verify and Preview Data Processors

It is possible to verify and preview the consequences of running the selected preprocessors on your data before actually
running them. This is a great help when writing and debugging a data processor description.

The verification tool gives you a summary of what the data processors will do to your data. This option will also give
you warnings and error messages if there is anything you should be careful about or if there seems to be an error in
your data processors.

To use the verification tool on your data processors, select the desired data processor(s) in the list (see Figure 14), and
then click the ‘Verify Selected’ button.

Figure 14: Selecting a data processor - the selected data processor is of type REPLACE

The verification tool reports any errors/partial success and the transformations done by the selected data processor.

© Copyright 2020, HUGIN EXPERT A/S 399

HUGIN Graphical User Interface Documentation, Release 8.9

The result of applying the verification tool can be seen in Figure 15.

Figure 15: Verification tool result - see how selected data processors performs, inspect errors etc.

The preview tool copies the top 200 rows in the dataset and applies the selected preprocessors on them and displays
the result in a new window which can be inspected.

An example of running the preview tool on 4 selected data processors is shown in Figure 16 and Figure 17. First, the
window in Figure 16 indicates which processors succeeded and which processors failed.

In this example 3 of the data processors are listed under SUCCESS while 1 data processor is listed under FAILED. The
result of running the data processors on the top 200 rows is outlined in the Preview table that follows when pressing
‘OK’ in the Summary window (Figure 16).

Using the verification tool on these 4 processors may indicate the cause of the error. Figure 18 shows that the COL-
UMN_CREATE processor failed since there were multiple columns named ‘X’.

400 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 16: Summary of run of 2 selected data processors. The Summary indicates that the COLUMN_CREATE
processor listed under FAILED did not succeed.

Figure 17: Preview of the result of running 2 selected data processors.

© Copyright 2020, HUGIN EXPERT A/S 401

HUGIN Graphical User Interface Documentation, Release 8.9

Applying Data Processors

To apply a data processor, select the data processor and click the run button. The data processor is applied to the data
set, and a window appears with a summary of which data processors succeded and which failed, see Figure 18. If any
errors appear, use the preview functionallity for further investigation and debugging.

Figure 18: Summary of run data processors.

402 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.8.12 Data Classifier Performance

The data classifier performance analysis tool computes ROC curves for binary classifiers and confusion matrix for
binary and multi class classifiers based on values in the data set. The data classifier performance tool is available for
the data matrix (page 411).

Requirements and Assumptions

Requirement

Classifier performance tool require that probabillities be pre-computed and present in data set - batch propagation
feature of the data frame (page 373) can be used to pre-compute required beliefs before running classifier performance
analysis.

Assumptions about data

It is assumed that the beliefs present in the data are pre-computed by propagating in a network where the actual value
of the target class has been held back.

Tips for pre-computing beliefs using the batch propagation feature:

• To hold back evidence on the target node: rename the column name to something different than the target node
(e.g. prepend an underscore symbol ‘_’) and then perform batch propagation.

ROC Curve

The ROC curve lets you inspect the performance of a given variable as a binary classifier for the data set.

© Copyright 2020, HUGIN EXPERT A/S 403

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: ROC curve

X-axis is the false positive rate, and the Y-axis is the true positive rate.

The ROC curve is based on the performance for predicting specific states.

The area under the curve can be used as a measure for the “goodness” of the network as a classifier for the given
variable.

Click a point on the ROC curve to inspect the corresponding predictor threshold.

404 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Confusion Matrix

A confusion matrix can be computed for binary and multi class classifiers.

Binary Classifier Confusion Matrix

A Binary confusion matrix can be computed based on a specific predictor threshold. The confusion matrix shows how
well a given variable performs as a predictor of the actual class.

Figure 2: Confusion matrix

© Copyright 2020, HUGIN EXPERT A/S 405

HUGIN Graphical User Interface Documentation, Release 8.9

The matrix is constructed like this:

And finally the error rate is reported. It is a measure of the number of false classifications over number of true
classifications.

Change the value in the threshold input box to inspect the corresponding confusion matrix.

Multi-State Classifier Confusion Matrix

A Confusion Matrix for Multistate classifiers can be calculated under the Multistate Classifiers tab.

As Actual Class select the name of the column containing the target class labels. Individual cases as well as Sequences
can be classified. To classify sequences, make sure that a column has been marked as sequence identifier. When a
column is selected under ‘Actual Class’, the table ‘State to Column Mappings’ is polulated with a row for each possible
state. Each row int the table is a mapping from a state in the ‘Actual Class’ table to a column of probabilities in the
data set (See Figure 3). As indicated in the parentheses a right-click menu is available. Additional mappings can be
created if mappings are needed for states not observed in the ‘True Class’ column. Different options are available for
sorting alloing convenient selection of the ‘Actual Class’ and State-Column mapping. In Sequence mode (A column
has been labeled as sequence identifier) a Sequence Classification method can be configured. There are two sequence
classification methods available. The simplest method assigns the entire sequence to the class that obtained the highest
probability. The second classification method assigns the sequence Si to class C if the P(C|Si) > t for some threshold
t. That means that with this setting a sequence can potentially be assigned to multiple classes which will be reflected
and summarized in the confusion matrix.

406 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: Multistate Confusion matrix.

Click ‘Calculate’ to calculate the the Confusion matrix. Once the confusion matrix has been calculated, it is possible
to look further at the classification result by clicking ‘Analyze Result’. This will open a new window displaying in
details which class each case or sequence was assigned to in the calculation.

4.8.13 Data Analysis

The data analysis tool provides summary of data properties and visual inspection of data points. The data analysis tool
is available for the data matrix (page 411).

© Copyright 2020, HUGIN EXPERT A/S 407

HUGIN Graphical User Interface Documentation, Release 8.9

Summary

A summary of data set properties is found in the summary panel, see Figure 1.

Figure 1: Summary of data set properties

The generated summary reports:

• Number of rows in data set

• Number of columns in data set

408 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

As well as a per column summary that contain:

• Column name

• Inferred data type - this is either Interval, Number or Text label

• Values count (not counting missing values)

• Distinct values count

• Missing values count

• The percentage of missing values (missing/total)

Inspection

The inspection panel provide visual inspection of numerical data points by plotting all values from selected columns
in a single chart. Depending on the data type of the selected columns, the chart may take the form of a set of dots
(numerical data X numerical data), lines (numerical data X discrete data) or a grid (discrete data X discrete data).

Multiple variables can be selected on the Y-axis by selecting multiple checkboxes in the bottom right panel. The colors
of each variable can be customized by clicking on the colored icon next to the variable name.

To plot a set of variables as a sequence, select the special value “Row Id” as the variable on the X-axis. It appears as
the first option in the drop-down menu.

The legend in the top-right corner can be removed by de-selecting the ‘include legend’ option at the bottom of the
screen.

Note that you can re-size the window to adjust the size of the plot.

The inspection panel in Figure 2 has a plot generated from numerical data.

© Copyright 2020, HUGIN EXPERT A/S 409

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Inspecting plot of numerical data points - missing data is plottet outside chart

A total of three columns can be used to generate the chart: X-axis, Y-axis and coloring. Columns can be selected from
the three drop-down lists. The drop-down lists contain column names, prefixed according to data type with either (n)
for numerical data, (i) for interval, or (t) for text labels.

Missing data go outside the chart following these rules:

• Missing on both X and Y go in the upper right corner

410 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• Missing on X and observed on Y go outside chart to the right

• Observed on X and missing on Y go outside chart in the top

If a column has been chosen for coloring the plot, values are mapped to colors in the range from red to green, blue
indicates missing value.

Classes

The classes panel provides inspection of discrete variables by classifying a variable using a selected target class. When
selecting a variable and target class, a table with counts and a column diagram is produced. When a column in the
diagram is clicked, the entry in the table that corresponds to the clicked column part is highlighted. Hovering the
mouse cursor over the diagram reports the corresponding configuration as well.

The classes panel in Figure 3 contains a diagram for classification using two discrete variables with three states each.

Figure 3: Inspecting classification using discrete variables

4.8.14 Data Matrix

The data matrix is HUGINs tool for inspecting and manipulating data sets. Data is displayed using a grid like interface
very similar to what most users know from Excel, see Figure 1. The data matrix is available in places dealing with
data files, including the learning- (page 249) and EM wizards (page 263), the data frame functionallity (page 373) and
other places dealing with data.

© Copyright 2020, HUGIN EXPERT A/S 411

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: A typical data matrix view

The leftmost column is the row header which display row numbers, first row is 0 as rows are zero-indexed. The top
header display column names, when using data with a HUGIN model the columns represent nodes.

Basic Editing

The data set can be inspected using the data matrix. Although HUGIN is not EXCEL, some basic editing of data items
can be performed:

• Use Mouse pointer or cursor-keys to navigate about

• Double-click a cell to edit the data item (see Figure 2)

Figure 2: Editing a cell

• Double-click column header to edit column name (see Figure 3)

Figure 3: Renaming column

412 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• Search and replace values in single column/all columns by right-clicking and selecting Replace values (see
Figure 4)

Figure 4: Basic search and replace

• Re-order columns by clicking a column header and dragging the column left or right

Rows and columns can be edited as well:

• Create/delete row by right-clicking row header and selecting insert- or delete row

• Create/delete column by right-clicking column header and selecting insert- or delete column

Figures 5 and 6 display the options available by right-clicking row header and column.

Figure 5: Right-click the row header - options

Figure 6: Right-click column - options

© Copyright 2020, HUGIN EXPERT A/S 413

HUGIN Graphical User Interface Documentation, Release 8.9

Advanced Functionallity

Columns containing numerical data, exclusively, can be discretized into a set of intervals by launching the discretizer
(read more about the discretization (page 415) features):

• Right-click a column containing numerical data and select Discretize values

More elaborate modifications are performed using batch preprocessing (read more about the preprocessing (Data
Processing) (page 390) features):

• Right-click and select the Data Processing option

To inspect properties of the data set use the data set analysis functionallity (read more about the data analysis
(page 407) features):

• Right-click and select the Analysis option

To perform analysis of classifier performance (read more about the classifier performance (page 403) analysis):

• Right-click and select the Classifier Performance option

4.8.15 Data Frame With Database Connection

HUGIN can extract data from an Apache Derby database9 into the data frame. This functionality is available from the
‘Data’ menu item in the HUGIN main window. Apache Derby is a database project purely written in Java allowing
for flexible database integration in Java programs. More information can be retrieved on the Apache Derby project’s
website10.

A screenshot of the “Database Connection” panel can be seen in Figure 1.

To connect to a Derby database the user needs to specify the following:

• “Database Connection”: Enter the database connection details in the field labeled . What to type here depends
on the configuration of the database. It can be located either on the local file system or it may be configured as
a server on a network location. Turn to the Derby Reference Manual for more details.

• “SQL Query”: The query to be executed. The Derby Reference manual, found on Apache Derby project’s
website11 documents the Derby SQL language.

• “Overwrite existing data”: Indicate whether the extracted data should overwrite the existing data i the below
data matrix. If the box is selected, the existing data will be deleted and replaced by the new data. Otherwise the
data will be appended.

The current version of the Derby Database driver included in HUGIN is Derby 10.14.1.0 Release, so you should be
looking for the 10.14 Derby Reference Manuals.

Once extracted, the data can be inspected, manipulated just as if the data had been read from a file in an ordinary
Data Matrix Frame (page 373). Changes in the data will not take effect in the database but the extracted (and perhaps
edited) data can be exported to a file using the “Save As” accessible through the “File” menu item.

9 https://db.apache.org/derby/
10 https://db.apache.org/derby/
11 https://db.apache.org/derby/

414 © Copyright 2020, HUGIN EXPERT A/S

https://db.apache.org/derby/
https://db.apache.org/derby/
https://db.apache.org/derby/
https://db.apache.org/derby/
https://db.apache.org/derby/

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Derby Database Connection Window.

4.8.16 Discretization

Discretization is the task of dividing a set of numerical values into a number of intervals. This task can be performed
using the discretization tool. The discretization tool is available for data matrix (page 411) columns containing nu-
merical data.

When specifying intervals, the lower bound of each interval is inclusive, and the upper bound exclusive - except for
the last interval where both lower and upper bounds are inclusive. E.g. If we specify the intervals 0-1, 1-2, 2-3, then
the first interval 0-1 would contain all values >=0 and <1, the second interval would contain values >=1 and <2, the
last interval would contain values >=2 and <=3.

Intervals must be contiguous, non-overlapping and bound all values in the data to be valid!

The discretization tool can be seen in Figure 1.

© Copyright 2020, HUGIN EXPERT A/S 415

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Discretization tool - manualy enter intervals

The top part of the discretization tool has two tabs, Manual and Visual, each providing alternative ways for specifying
intervals. From the manual tab, intervals can be entered by hand, and from the visual tab intervals can be defined using
a slider.

The bottom part of the tool summarizes a few intersting details about the data, the number of values (not counting
missing values), the number of distinct values, and the percentage of missing values.

Below the data summary is a row of buttons for adding and removing intervals, as well as for performing a number of
automatic discretization functions.

416 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Function Buttons

Button +

Add interval.

Button -

Remove interval.

Auto

Clicking the Auto button brings forward the auto discretization dialog, see Figure 2. Auto discretization divides the
values into a specified number of equally distanced intervals. From the dialog, the number of intervals can be specified,
as well as lower and upper bounds and whether to extend bounds to infinity.

Figure 2: Auto discretization dialog - quickly generate a number of equally distanced intervals

Equi-distance

This performs the same kind of discretization as provided by the Auto discretization dialog, just using the current
number of intervals.

Equal distribution

This function tries to fit the bounds of the intervals such that each interval contains approximately the same number of
values. Depending on how well the data values are scattered, the number of intervals may be pruned in order to make
the resulting intervals equally distributed.

Manual

The manual tab contains the table which was seen in figure 1. Each row is an interval, and the columns are the lower
and upper bounds for each interval. Intervals are added and removed using the + and - buttons. Upper and lower
bounds for an interval is edited by double-clicking the appropriate cell.

Positive and negative infinity are specified using the strings ‘inf’ (for positive infinity), and ‘-inf’ (for negative infinity).
Negative infinity is only valid for the lower bound of the first interval, positive infinity is only valid for the closing
upper bound of the last interval.

© Copyright 2020, HUGIN EXPERT A/S 417

HUGIN Graphical User Interface Documentation, Release 8.9

Visual

The visual tab contains a list of intervals, and a set of sliders, see Figure 3.

Figure 3: Visual discretization - bars show value count for each interval

The ruler on the left has a slider for each interval. Interval bounds are modified by adjusting the sliders.

The interval list is annotated with bars and value counts. The bars show the proportional number of data values
contained in a specific interval. This provided a quick visual overview of how data values are distributed between
intervals.

The bars from Figure 3 show an unequal distribution of values between intervals, Figure 4 shows a much better
distribution.

418 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 4: Bars show the values are equally distributed between intervals

© Copyright 2020, HUGIN EXPERT A/S 419

HUGIN Graphical User Interface Documentation, Release 8.9

4.8.17 Import Information

Various kinds of information can be inherited from nodes of one network to nodes of another network via the Import
Information feature, which is available via the Network Menu (page 173) of the Main Window (page 174). When this
feature is activated and a file has been chosen, a dialog box appears (see Figure 1), which offers the user a possibility
to select the kinds of information that should be imported. By default, all kinds of information are selected.

Figure 1: The Import Information dialog box.

This feature is very useful when using the Learning Wizard (page 249), allowing one to save (and later reload) struc-
tural constraints (i.e., structural domain knowledge). Please note that the Structural Constraints check box is available
only when using the Import Information feature from the Learning Wizard.

4.8.18 Import Network Description from Tables

The Import Network Description From Tables wizard can import network descriptions on a primitive table based
format.

As most computer software is able to export data to a primitive table based format, this wizard may be the only option
for importing network information from, or integrating HUGIN with a thirdparty program unaware of the HUGIN Net
language.

A primitive table consists of rows and columns. Individual columns are separated by symbols <SPACE>, <TAB> or
comma (‘,’). Rows are separated by either <NEW-LINE> or <CARRIAGE-RETURN><NEW-LINE>.

Importing a network description is performed in three steps:

1. Parse variable definitions

2. Parse link definitions

3. Parse table descriptions

Each kind of description is a file containing a primitive table with only a few formatting conventions.

420 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Variable definitions

The variable definitions table consists of three columns:

<NAME> <TYPE> <STATE>

The first column <NAME> indicates node name. A node name must begin with a letter and only contain characters
[a-z][A-Z][0-9].

The second column <TYPE> indicates node type. Valid values are:

L (labelled node)
B (boolean node)
N (numbered node)
I (interval node)
C (continuous node)
F (function node).

The third column <STATE> specify information about node states and is required for labelled, numbered and interval
nodes. The specific number of states for a node is determined by the number of lines pertaining to specifying the
particular node. States are created in the order they appear in the file. Values have different meaning depending on
node type:

Labelled nodes: Value specify state label. The label must be enclosed in quotation marks (“) if it contains any
whitespace characters or characters outside the range [a-z][A-Z][0-9]. To specify n states, the node must appear in n
lines in the file.

Numbered nodes: Value specify numeric state value. Value must be a number which can be specified using characters
[0-9] and dot (‘.’). To specify n states, the node must appear in n lines in the file.

Interval nodes: Value specify state interval endpoints. Value must be a number which can be specified using characters
[0-9] and dot (‘.’). Positive and negative infinity is specified by the string ‘infinity’ and ‘-infinity’. To specify n states,
the node must appear in n + 1 lines in the file. First line indicate lower bound for first interval, following lines indicate
upper bound for previous interval and lower bound for current interval. The last line n + 1 indicate upper bound for
state n.

Link definitions

The link definitions table consists of a line for each node specifying the parents, consisting of a variable number of
columns:

<NODE> (<PARENT-NODE>)*

The value in the first column <NODE> indicates a node and values in each of the following <PARENT-NODE>
columns specify the parents of this node. Thus the network structure can effectively be described as a number of lines
in the link definitions table.

© Copyright 2020, HUGIN EXPERT A/S 421

HUGIN Graphical User Interface Documentation, Release 8.9

Table descriptions

Node table descriptions are specified in a number of separate files, one per node. Each file contains a primitive table
describing the CPT for a particular node. Table descriptions distinguish between tables with model nodes and tables
without model nodes.

Tables without model nodes:

first line <NODE>
second line <PARENT-LIST> <NODE-STATE-LIST>
following lines <PARENT-CONFIGURATION> <PROBABILITY-LIST>

The <PARENT-LIST> is a list of parent node names:

<PARENT-LIST> := (<PARENT-NODE>)*

The <NODE-STATE-LIST> is a list of states for the node specified in <NODE>. A state can be either a state number
or a state label:

<NODE-STATE-LIST> := (#<STATE-NUMBER> |<STATE-LABEL>)+

When specifying tables for continuous nodes the <NODE-STATE-LIST> instead denotes alpha and variance:

<NODE-STATE-LIST> := alpha variance

The <PARENT-CONFIGURATION> specify a unique configuration of the parent nodes. The list identifies, in parent
node order, a state for each parent node specified in <PARENT-LIST>. A state can be either a state number or a state
label:

<PARENT-CONFIGURATION> := (#<PARENT-STATE-NUMBER> |<PARENT-STATE-LABEL>)*

The <PROBABILITY-LIST> specifies the probabillity for the particular configuration in <PARENT-
CONFIGURATION> for each state in <NODE-STATE-LIST>:

<PROBABILITY-LIST> := (<NUMBER>)+

In the case of continuous nodes, the <PROBABILITY-LIST> specifies the values for mean and variance:

<PROBABILITY-LIST> := <NUMBER-MEAN> <NUMBER-VARIANCE>

Tables for function nodes without model nodes

Specifying a table for a function node is even simpler, as only an expression must be supplied in the form of a quoted
string. The table thus consists of a single line with two columns:

single line <NODE> <EXPRESSION-AS-STRING

Tables with model variables Specifying a table for a node with model variables is almost the same as without model
variables. The difference is the second line, which only contains a <PARENT-LIST> and the following lines which
instead of a <PROBABILITY-LIST> contains the expression for the node based on the given parent configuration:

422 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

first line <NODE>
second line <PARENT-LIST>
following lines <PARENT-CONFIGURATION> <EXPRESSION-AS-STRING>

Example

This example is based on the Chest Clinic example and demonstrates what the Chest Clinic network would look
like on primitive tables form.

Variable definitions

File: asia.nodes
A L yes
A L no
S L yes
S L no
T L yes
T L no
L L yes
L L no
B L yes
B L no
E L yes
E L no
X L yes
X L no
D L yes
D L no

Link definitions

File: asia.parents
T A
L S
B S
E L T
D B E
X E

Table descriptions

File: A.table
A
yes no

© Copyright 2020, HUGIN EXPERT A/S 423

HUGIN Graphical User Interface Documentation, Release 8.9

0.01 0.99

File: B.table
B
S yes no
yes 0.6 0.4
no 0.3 0.7

File: D.table
D
B E yes no
yes yes 0.9 0.1
yes no 0.8 0.2
no no 0.1 0.9
no yes 0.7 0.3

File: E.table
E
T L yes no
yes yes 1 0
yes no 1 0
no no 0 1
no yes 1 0

File: L.table
L
S yes no
yes 0.1 0.9
no 0.01 0.99

File: S.table
S
yes no
0.5 0.5

File: T.table
T
A yes no
yes 0.05 0.95
no 0.01 0.99

File: X.table
X

424 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

E yes no
yes 0.98 0.02
no 0.05 0.95

Importing in HUGIN

To import the network description click File -> Import -> Import network from tables. The Import From Tables Wizard
appears, see Figure 1.

Figure 1: Import From Tables Wizard

Importing:

1. Browse for primitive table files by clicking the Browse button.

2. Arrange files onto appropriate lists using the << and >> buttons to move files between the Available Files list
and Node definitions, Network Structure and Tables lists. Clicking the Auto-Arrange button arranges the lists
based on file endings (.nodes, .parents, .table).

3. Click on a file to preview its contents.

© Copyright 2020, HUGIN EXPERT A/S 425

HUGIN Graphical User Interface Documentation, Release 8.9

4. Finally click Import.

4.8.19 Load Case

The Load Case function can be activated by selecting the “Load Case” item of the File Menu (page 179) when the
network is in run mode. It will load the case (page 370) stored in the chosen file, and insert the corresponding evidence
into the network.

4.8.20 Save Case

The Save Case function can be activated by selecting the “Save Case” item of the File Menu (page 179) when the
network is in run mode, and evidence has been inserted. It will save the inserted evidence, as a case (page 370), in the
chosen file.

4.8.21 Recently Used Files

The recently used files are found in the last part of the File Menu (page 179) - just above the Exit (page 160) item.

This list of HUGIN network files enables the user to open a recently used network faster than using the standard Open
(page 159) function. Selecting the menu item for one of the recently used files opens this network file in a new Network
Window (page 171).

In the Preferences (page 189) dialog box, you can specify how long this list should be.

4.8.22 Save in a File without GUI Attributes

The “Save in a File without GUI Attributes” menu item can be found in the File Menu (page 179), and will write your
model file in a file cleansed from GUI Attributes (“HR_”).

426 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: The Save in a File without GUI Attributes Menu Item.

Background

The HUGIN GUI will write some attributes in the network files that are mostly related to how the models are rendered
(e.g. splines). These attributes are referred to as GUI Attributes, and can be recognized by the fact that they start with
“HR_”. The amount of GUI attributes can be quite extensive in some cases and some users have reported that they
find the GUI attributes confusing when reading the network files in a text editor. In some cases these attributes may
even contain information about nodes that have been deleted. Usually, this would not cause any issues. Since the GUI
Attributes are only relevant to how the network is rendered in the HUGIN GUI, they can be removed without having
any effect on how the model calculates.

© Copyright 2020, HUGIN EXPERT A/S 427

HUGIN Graphical User Interface Documentation, Release 8.9

How to remove the GUI Attributes

Once activated, the menu item will overwrite your file with a new file cleansed from GUI Attributes. If the file has
not been saved yet, you will be prompted for a destination. Text Labels are implemented using GUI attributes. They
are the only GUI attributes that will not be deleted during the operation. In order to complete, HUGIN will close your
model window. That is done in order to prevent the HUGIN GUI from writing new GUI attributes which may happen
during the normal save procedures.

Limitations

The functionality is only supported for “flat” networks. The model must not be instantiated in any other loaded models
and the model must not contain any instantiations.

4.8.23 Write as BMP

The “Write as BMP” submenu can be found in the File Menu (page 179), and gives access to the possibility of writing
networks, tables, and probabilities as BMPs (for each insertion into other programs).

Figure 1: The Write as BMP submenu.

Write Network

The Write Network function saves the active network to a BMP file. Since BMP files can become very large, it is
possible that there is not enough memory on the machine to create a large enough file. If this is the case, Hugin will
ask for permission to split the BMP into a number of files, which can be created.

Write Network w/Monitors

Same as Write Network, but includes all visible monitors (page 183) in the BMP file as well.

Write Tables

The Write Tables function writes the open tables to a BMP file. That is, it is not dependent on the selected nodes, only
the tables shown in the table pane (page 224). Again, the BMP may need to split into several files.

428 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Write Probabilities

The Write Probabilities function writes the current probabilities (beliefs) of the selected nodes to a BMP file. Again,
the BMP may need to split into several files.

4.8.24 Write as PDF

The “Write as PDF” submenu can be found in the File Menu (page 179), and gives access to the possibility of writing
networks (for each insertion into other programs).

Figure 1: The Write as PDF submenu.

Write Network

The Write Network function saves the active network to a PDF file.

Write Network w/Monitors

Same as Write Network, but includes all visible monitors (page 183) in the PDF file as well.

4.8.25 Write as SVG

The “Write as SVG” submenu can be found in the File Menu (page 179), and gives access to the possibility of writing
networks (for each insertion into other programs). SVG is a vector-based graphics format which renders nicely when
imported in documents also when resized. Therefore, the SVG format is recommended when you wish to share your
work in books or reports. The SVG format is supported by Word and LaTeX.

Figure 1: The Write as SVG submenu.

Write Network

The Write Network function saves the active network to an SVG file.

© Copyright 2020, HUGIN EXPERT A/S 429

HUGIN Graphical User Interface Documentation, Release 8.9

Write Network w/Monitors

Same as Write Network, but includes all visible monitors (page 183) in the SVG file as well.

Legal Notice

The SVG feature is based on the JFreeSVG12 library, with a commercial license from Object Refinery Ltd.13.

4.8.26 Data Dependences

The Data Dependences page of the Learning Wizard allows you to investigate the strengths of the marginal depen-
dences between pairs of variables, using a slider.

Please note that the actions performed in the Data Dependences page have no effect on the resulting Bayesian-network
model. The purpose of this Data Dependences page is only to gain insight into the strenghts of the pairwise depen-
dences.

Interpretation of the Learned Graph

The Data Dependences page of the Learning Wizard initially shows the independence graph learned from data. This
graph is directed, but with no directed cycles (i.e., it’s a DAG). The DAG represents the conditional and marginal
dependences and independences found in the data. The links, however, cannot necessarily be interpreted as causal
links. The directions of the links only ensure that the dependences and independences found can be read from the
DAG, using e.g. Pearl’s d-separation criterion.

Notice that the DAG is learned only indirectly, based on measures of conditional and marginal dependences and
independences found in the data.

To further investigate the dependences and independences found in the data, an undirected graph can be shown, where
each link represents a marginal dependence with strength larger than one minus the current slider value. To see how
to switch between the directed and the undirected graphs, see the description of the toolbar.

The Toolbar

The Data Dependences page contains a toolbar, including the following functionalities:

• Show Directed Graph (page 431)

• Show Undirected Graph (page 431)

• Show Enforced Links (page 431)

• Show Enforced Non-Links (page 431)

• Stretch Slider Scale (page 432)

• Compress Slider Scale (page 432)

12 http://www.jfree.org/jfreesvg/
13 http://www.object-refinery.com/

430 © Copyright 2020, HUGIN EXPERT A/S

http://www.jfree.org/jfreesvg/
http://www.object-refinery.com/

HUGIN Graphical User Interface Documentation, Release 8.9

Show Directed Graph

This function displays a directed independence graph (i.e., a DAG). The DAG gets displayed by pressing the button

Please note that the Show Directed Graph and the Show Undirected Graph modes are mutually exclusive (i.e., the two
associated buttons act as a couple of radio buttons).

Show Undirected Graph

This function displays an undirected independence graph. This graph is not necessarily identical to the directed
graph with the directed links replaced by undirected ones. Each link in the undirected graph represents a marginal
dependence with strength greater than one minus the current slider value. The undirected graph gets displayed by

pressing the button

As mentioned above, please note that the Show Directed Graph and the Show Undirected Graph modes are mutually
exclusive (i.e., the two associated buttons act as a couple of radio buttons).

Show Enforced Links

This function gives you the opportunity to show the must-exist links specified in the Structural Constraints page. These

links are shown/hidden by pressing the toggle button

Please note that whenever this toggle button is selected the slider gets disabled to avoid overlaps between enforced
links and links appearing and disappearing during sliding.

Show Enforced Non-Links

This function gives you the opportunity to show the must-not-exist links specified in the Structural Constraints page.

These links are shown/hidden by pressing the toggle button

Please note that whenever this toggle button is selected the slider gets disabled to avoid overlaps between enforced
non-links and links appearing and disappearing during sliding.

p-Value

Whether or not there is going to be a link between a pair of variables, say A and B, in the independence graph learned
from the data depends on the degree to which A and B are (conditionally) (in)dependent - if they are marginally
dependent, there will be a link; otherwise there won’t be a link. This degree is quantified through so-called p-values
associated with the hypothesis that the two variables are (conditionally) independent. For each (small) set, C, of
conditioning variables, a p-value for {A,B} is computed. This value expresses the probability that A and B are
conditionally independent given C. The marginal p-value is the p-value corresponding to C={}.

The marginal dependence between A and B is defined as one minus the marginal p-value associated with {A,B}. Thus,
a marginal dependence of 0 means that A and B are completely independent, and 1 means that they are completely
dependent.

© Copyright 2020, HUGIN EXPERT A/S 431

HUGIN Graphical User Interface Documentation, Release 8.9

Slider

The current slider value represents a threshold such that only links in the current (directed or undirected) graph with
marginal p-values less than the threshold are shown (or, equivalently, links with marginal dependence greater than one
minus the threshold value). Thus, the slider provides a means of detecting the marginal strengths of the links. This
can be very useful in determining which links should be forced to be included (see the help page for the Structural
Constraints page of the Learning Wizard for a more detailed discussion of this issue).

Stretch Slider Scale

The value of the lower endpoint of the slider can be decreased by pressing the button or by dragging the slider
ticks downwards, using the mouse.

Please note that the minimum value of the lower endpoint of the slider equals the maximum of the smallest floating
point number available and the smallest marginal p-value over all links in the graph.

Compress Slider Scale

The value of the lower endpoint of the slider can be increased by pressing the button by dragging the slider ticks
upwards, using the mouse.

Please note that the maximum value of the lower endpoint of the slider equals 1E-10.

Importing Information

Pressing the “Import”-button : , allows for import of all network information, such as node positions, labels, sizes,
etc., from a net-file. This can be very useful, if the data relates to a network whose structure is known. In that case,
you can simply import the labels and positions of the nodes. The learned network can then easily be compared to the
existing one.

4.8.27 Data Acquisition

The Learning Wizard reads data directly from a text for the learning:

Plain Text Files

The plain text files must conform to a certain standard:

• Each line in the file must consist of a list of values

• The values must be separated by a separator, with the default separator being “,”.

• All lines must contain the same number of values

• Missing values are indicated by an empty entry

A sample data file could be:

field1,field2,field3
true,true,false

432 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

true,true,
false,false,true
false,true,false
false„false

Using this datafile will result in a model with three nodes named: field1, field2, and field3. Each node will contain the
states: true, false.

4.8.28 Feature Selection

The Learning Wizard can perform feature selection in discrete node networks.

When there are many possible features available for a classification problem, we might want to select a subset of these
features for the actual classification. We can learn such a subset by using mutual information.

We start with the target variable. Then we successively select features such that the next selcted feature has the
highest sum of mutual information scores to the currently selected features.

Select target node

The target node for the features.

Number of features

The maximum number of nodes

4.8.29 Nodes Summary

A summary of the node types inferred from the data.

Columns containing numeric data can be either a discrete numbered node or a continuous gaussian node. The user
must select desired node type (discrete numbered is the default option).

Numeric -> Numbered

A click on this button configures all numeric nodes as discrete numbered nodes.

Numeric -> Continuous

A click on this button configure all numeric nodes as continuous nodes.

© Copyright 2020, HUGIN EXPERT A/S 433

HUGIN Graphical User Interface Documentation, Release 8.9

4.8.30 Prior Knowledge

Before the Learning Wizard learns the marginal and conditional probabilites from the data, it is possible to specify
prior distributions for the variables.

This is useful if prior knowledge about the (conditional) distributions for (some of) the variables exists. It is possible
to include such knowledge in the model before the marginal and conditional probabilities are learned. By including
the knowledge before the learning, the resulting probabilities will be based on both the prior knowledge and the data.
The weight of the prior knowledge is inserted by specifying experience counts.

An example of the use of both prior probability distributions and their experience counts is given in the last part of this
text.

Specifying Prior Conditional Probabilities

Prior distributions can be specified separately for each variable in the learned structure. When a variable is selected in
the “Variable” combo box, its conditional probability table is displayed, and the prior distributions can be entered.

It is possible to either randomize or reset the prior probabilites. This is done by using the appropriate button at the
bottom of the panel.

Randomizing the probability distributions can be used to test the “robustness” of the results found from data with
missing values. The randomized probability distributions are used as the base when learning the probabilities. Since
each missing value is found by looking at the current conditional probability table (after propagation of all evidence
from the case), a randomized prior probability distribution may affect the outcome of the learning. If a node has a
model, then the conditional probability table corresponding to the expressions specified in the model is generated.

Specifying Experience Counts

Experience counts are specified in the same manner as the prior conditional probabilities. That is, the variable for
which experience counts are to be inserted is selected from the “Variable” combo box, and experience counts are
entered for each parent configuration.

434 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

It is also possible to reset one or all of the experience tables by pressing one of the buttons, as was the case for the
prior probability tables. However, it does not make sense to randomize the experience counts. Instead, it is possible to
delete and (obviously) create experience tables.

If a variable does not have an experience table, its probability table will not be altered during the learning process.
That is, if the distribution of a variable is known with 100 % accuracy, the experience table can be deleted. This will
speed up the learning process a bit.

Experience tables are implicitly only when the “Prior Knowledge” step is performed as a step of the Learning Wizard
(and not as a step of the EM Learning Wizard).

Prior Distribution Example

In this example, the data contains information on the fairness of two brands of six-faced dice. The data includes 1000
cases.

Die B, say, is a completely new brand of which nothing is known, and die A is a well known brand, which has always
scored high on fairness.

To incorporate this knowledge into the learned domain, nothing is entered into the tables of die B. This will let the
resulting probabilites depend solely on the data.

For die A, we will enter the value 0.1666 (one sixth) in all the fields, thus specifying fairness (note that we might as
well have left the fields at 1, since the values are normalized so that they will sum to 1; what is important is that the
values are all equal).

This, however, is not enough. It only describes part of our knowledge. We should also specify our confidence in the
fairness of die A. This is done by selecting the “Experience”-pane, and entering experience counts in the table.

© Copyright 2020, HUGIN EXPERT A/S 435

HUGIN Graphical User Interface Documentation, Release 8.9

The entered experience counts will determine the weight of the inserted knowledge compared to the data. If we want
to let the data have the same weight as the inserted knowledge, we should specify an experience count of 1000. This
value tells the learning algorithm that the inserted knowledge has the weight of 1000 cases (and thus the same weight
as the data). That is, the more confidence we have in the prior knowledge, the higher the experience counts should be
set.

4.8.31 EM Learning

EM Learning is the process of learning the conditional probabilities for the variables from the data. It is an iterative
process which improves the estimated conditional probabilities in each iteration. That is, the conditional probabilities
will match the data better and better for each iteration.

It is possible to control the process to some extent by using two different parameters:

• maximum number of iterations for the process to run.

• convergence threshold.

Once these parameters have been specified, the Learning Wizard can complete the learning. When the conditional
probability tables have been learned, the Learning Wizard will exit, and the learned model will be inserted into the
Hugin GUI, for further use.

It is possible to skip the learning of the tables by selecting the check box at the bottom of the panel:

If, however, EM-learning has been skipped, it is still possible to perform the learning “manually” by pressing the
EM-learning button in the tool bar panel:

Maximum Number of Iterations

As described, EM learning is an iterative process, which continuously improves the resulting conditional probabilities.
Setting the maximum number of iterations will force the learning process to terminate when it reaches that number
(note, that it may terminate earlier, if the convergence threshold is reached).

Setting the maximum number of iterations to zero will make the learning process disregard the maximum number
of iterations. Convergence Threshold After each iteration, the EM learning will calculate the convergence. This is
calculated as:

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 𝑙𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑛)− 𝑙𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑛− 1)

Where n is the number of the current iteration, and where:

𝑙𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑛) =

𝑐𝑎𝑠𝑒𝐶𝑜𝑢𝑛𝑡−1∑︁
𝑖=0

𝑃 (𝑐𝑎𝑠𝑒𝑖)

The learning will process will terminate when the convergence reaches a value smaller than the convergence threshold
(or earlier, if the maximum number of iterations is reached).

436 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Note, that the convergence threshold must have a value larger than zero, for the Learning Wizard to finish.

4.8.32 Structural Constraints

The Learning Wizard allows you to specify available knowledge about dependences or independences among pairs of
variables in the data set. That is, if a pair of variables are known to be marginally dependent (i.e., a there must be a
link between them) or conditionally independent (i.e., there must not be a link between them), such knowledge can
be specified by imposing structural constraints upon the graphical model learned from the data. You can specify four
different kinds of constraints:

• Existence of a Causal Link (page 437)

• Non-Existence of a Causal Link (page 437)

• Existence of a Link (page 438)

• Non-Existence of a Link (page 438)

Please note that only one constraint can be specified per pair of variables.

Existence of a Causal Link

If a variable, say B, is known to be causally dependent on another variable, say A, then this knowledge can be specified
using the Arrow Constraint Tool, which is activated by pressing its associated button:

Once activated, the causal link from A to B is specified by pressing the left mouse button at A, dragging the mouse to
B, and then releasing the button. Please note that the tool remains activated until you select another tool.

Non-Existence of a Causal Link

If a variable, say B, is known not to be causally dependent on another variable, say A, then this knowledge can be
specified using the No-Arrow Constraint Tool, which is activated by pressing its associated button:

Once activated, the constraint that a causal link from A to B is forbidden is specified by pressing the left mouse button
at A, dragging the mouse to B, and then releasing the button. Please note that the tool remains activated until you
select another tool.

Notice that specifying that a causal link is not allowed from A to B does not disallow a causal link from B to A.

© Copyright 2020, HUGIN EXPERT A/S 437

HUGIN Graphical User Interface Documentation, Release 8.9

Existence of a Link

If a pair of variables, say A and B, are known to be marginally dependent (i.e., no matter what evidence is given, A
and B are dependent), but it is not known which variable causes which, then this knowledge can be specified using the
Link Constraint Tool, which is activated by pressing its associated button:

Once activated, the link between A and B is specified by pressing the left mouse button at one of the nodes, dragging
the mouse to the other node, and then releasing the button. Please note that the tool remains activated until you select
another tool.

Notice that in the model resulting from structural learning, the link between A and B will be directed.

Non-Existence of a Link

If a pair of variables, say A and B, are known to be conditionally independent (i.e., with some, possibly empty, set of
evidence given, A and B are independent), then this knowledge can be specified using the No-Link Constraint Tool,
which is activated by pressing its associated button:

Once activated, constraint that no link is allowed between A and B is specified by pressing the left mouse button at one
of the nodes, dragging the mouse to the other node, and then releasing the button. Please note that the tool remains
activated until you select another tool.

Usefulness of Enforced Links

Not only can specification of domain knowledge in the form of link constraints be useful in guiding the learning
algorithm towards the best possible model, it also can be indispensable in some cases.

Consider, for example, a case where for three variables, A, B, and C, the following statements hold true * A and B are
independent given C * A and C are independent given B * B and C are independent given A * A and B are marginally
dependent * A and C are marginally dependent * B and C are marginally dependent

It is not possible to represent all of these statements in a single DAG. The DAG, however, must represent all dependence
statements (i.e., if a pair of variables are marginally dependent, there must be a link between them), as the posterior
probabilities will otherwise be wrong. Unrepresented independence statements may lead to more complex inference,
but do not lead to wrong probabilities. Therefore, the following DAG is a correct, but not a complete, representation
of the above statements.

However, if for a pair of variables, say X and Y, it holds true that X and Y are conditionally independent given a third
variable (or a set of variables), then the PC learning algorithm makes sure that X and Y do not get connected by a link.

438 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Thus, the DAG resulting from the PC algorithm completely represents the independences found in the data, but it does
not necessarily represent all dependences.

Thus, in the above example, the following structure will be generated.

Therefore, it can be necessary to manually specify some dependences when using the PC algorithm. Alternatively,
one may wish to use the NPC algorithm, which takes care of situations like this (see the help page of the next page of
the Learning Wizard). In the subsequent Data Dependences page such marginal dependences can be identified.

Saving / Importing Information

If the learning process is to be repeated a number of time, it can be rather cumbersome to specify the same constraints
over and over again. To avoid this, the model information, including the constraints, can be saved to a net-file using
the “Save”-button :

This allow for later import of the saved information by using the “Import”-button : .

Note, that this allows for import of all the model information, such as node positions, labels, sizes, etc. This can be
very useful, if the data relates to a network whose structure is known. In that case, you can simply import the labels
and positions of the nodes. The learned network can then easily be compared to the existing one.

4.8.33 AIC / BIC / LL

Clicking on the “AIC/BIC/ll” tab will bring forward the AIC/BIC/ll pane, see figure 1. The wizard calculates the AIC,
BIC and log-likelihood scores of the model given the case data.

© Copyright 2020, HUGIN EXPERT A/S 439

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: AIC/BIC/ll pane.

4.8.34 Case Beliefs

Clicking on the “Cases/Beliefs” tab will bring forward the cases pane, see Figure 1. The case pane offers the option
of selecting a node and one of it’s states and displaying the beliefs for that state in each case, highlighted by a color.

440 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Cases - Beliefs pane

This pane consists of six elements, a drop down box at the top to select what node to analyse, a dropdown box to
select one of the node’s states, a check box (Remove evidence), the color threshold spinner, a refresh button and a
table showing the cases.

By selecting a node and one of its states, the case table displays the beliefs for that node in each case for which no
evidence is entered. The information for the selected node will always be displayed in the first column after the “Case
no.” column (second column).

By checking the Remove evidence check box and pressing the refresh button, beliefs are retracted and displayed for
cases where evidence was entered in the node under analysis

The color threshold spinner offers the option of selecting the belief values to be colored (the values higher than
the selected are colored). The tone of the color indicates how high the value is (the darker the color the higher the
value is). The coloring ability together with the ability to sort the column makes it easier to notice the values desired.

To sort the column click, once on it’s header for ascending order or twice for descending. It is possible to save one
or more cases to a file so they can be used in another wizard (f.ex Parameter Sensitivity). After selecting one or more
cases right click on the mouse and select “Save Case” for saving one case, or “Save Selected Cases” for saving many
cases. (see Figure 2).

© Copyright 2020, HUGIN EXPERT A/S 441

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Cases - Beliefs pane “save selected cases”

4.8.35 Data Accuracy

Clicking on the “Data Accuracy” tab will bring forward the Data accuracy analysis pane, see Figure 1. Given a node
and a set of cases, this pane generates an analysis report with information about how well the predictions of the network
match the cases.

442 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Data Accuracy pane.

This pane consists of four elements, a drop down box at the top to select what node to analyze, an ROC curve, an
analysis report and a table showing the cases.

Analysis Report

The analysis report list the number of cases used for analysis (only cases without observations of the actual node is
ignored). A confusion matrix is generated showing how well the observed states match the predicted. Prediction may
be based on selecting the state with the highest belief to be the predicted state, or based on selecting a state with a
belief greater than or equal to the ROC cutoff threshold (Note that if a node has two or more states that qualify to
be the predicted state, one of them is randomly selected as the predicted state). An error rate is calulated telling how
many cases actually match the predictions. The button Calculate Matrix (using max. belief) makes a report where
prediction is based on selecting the state with the highest belief as the predicted state. Average euclidian distance and
Kulbach-Leibler divergence are reported. The distance measures are from the true distribution x inferred from the case
data e with respect to the selected node X, and the distribution y resulting from propagating eX.

© Copyright 2020, HUGIN EXPERT A/S 443

HUGIN Graphical User Interface Documentation, Release 8.9

The Euclidian distance is computed as:

𝑑𝑖𝑠𝑡𝑄(𝑥, 𝑦) =
∑︁
𝑖

(𝑥𝑖 − 𝑦𝑖)
2

The Kulbach-Leibler divergence is computed as:

𝑑𝑖𝑠𝑡𝐾(𝑥, 𝑦) =
∑︁
𝑖

(𝑙𝑜𝑔2𝑥𝑖 − 𝑙𝑜𝑔2𝑦𝑖)
2

The reported distance measure is averaged over all cases where X has been observed.

ROC Curve

The ROC curve lets you inspect the performance of a given variable as a classifier for the data set. X-axis is the false
positive rate, and the Y-axis is the true positive rate. The ROC curve may be based on the accumulated performance for
predicting all states (multi-class), or a specific state. The area under the can be used as a measure for the “goodness”
of the network as a classifier for the given variable. The button Calculate Matrix makes a report where prediction is
based on selecting a state with a belief greater than or equal to the ROC cutoff threshold as the predicted. The threshold
can be specified by moving the threshold slider left and right. The current threshold is also signified by a point on the
curve, signifying the expected performance with regards to the ratio between true and false predictions.

Case table

The table shows the cases used for analysis. The node selected for analysis will always be located in the second last
column of the table. The last column in the table report the probability of the node being in the state observed in the
case, given the case without information about the state of the node itself. Cases are colored green for a match, red for
no match and blue if ignored. A match is when the predicted state for the node is the same state observed in the case.

4.8.36 Data Source

To perform any analysis the wizard will first need a set of cases. Cases can be imported by * loading a hugin data file,
* Connect to a database service and import. * copying cases (if any) from the network, * or sampling a number of
random cases.

Click on button “select file” to load a hugin data file, button “use cases from network” to copy cases from the network
and click on the tab “Sampling” to sample a number of random cases to use as data source.

After importing a set of cases, the Data Source pane will display a table with the imported cases, see Figure 1. To
discard all imported cases click on the button “Clear Data”.

444 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Data Source pane. A set of cases has been imported.

4.8.37 Dependencies

Clicking on the “Dependencies” tab will bring forward the data dependencies pane, see figure 1.

© Copyright 2020, HUGIN EXPERT A/S 445

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Data dependencies pane.

The Dependencies pane allow for inspecting the mutual information of nodes. Depending on the threshold set by the
slider, edges will be hidden according to the mutual information of the nodes. Toggle between inspecting mutual in-
formation for all nodes or nodes with directed edges by clicking the checkbox “Complete graph”. Mutual information
will be computed based on the case selected in the “Enter Case” drop down box.

Buttons at the top of the pane allows for zooming the view of the network and adjusting the scale of the slider if
possible.

• Stronger and weaker dependencies can be identified by moving the threshold slider, as edges are only displayed
if the mutual information between the connected nodes are above the threshold.

• Mutual information between all nodes can be inspected by clicking ‘Complete Graph’.

• Mutual information computation will be based on the the network instantiation chosen in the ‘Enter Case’ drop-
down list

446 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

4.8.38 Sampling

Clicking on the tab “Sampling” will bring forward the sampling pane. The sampling pane is shown in figure 1.

Figure 1: Sampling pane.

Cases can be generated in two different ways: MCAR (Missing Completely at Random) or MAR (Missing at Random).
MCAR sets some values to N/A by removing values of some nodes in the generated case set randomly (i.e., MCAR
considers all the values in the generated cases and not one case at a time).

MAR randomly sets some values in a case to N/A based on auto-generated templates. These templates specify that
if some nodes have a specific value, then the values of a subset of the nodes are randomly set to N/A. Note that the
specification of the templates is generated randomly.

In both cases the conditional probability distribution is considered as a factor to the number of cases generated with a
specific set of observations. Also in both MCAR and MAR it is possible to indicate the percentage of missing values.

The cases generated will be based on the conditional probability distribution given by the scenario chosen in the combo
box “Sample configurations based on”.

Any cases generated will be added to the current set of imported cases.

© Copyright 2020, HUGIN EXPERT A/S 447

HUGIN Graphical User Interface Documentation, Release 8.9

4.8.39 Application Update

Each time the Hugin Graphical User Interface is launched it will check the http://www.hugin.com web-site for new
updates. If a new update is available, the user is given the option to download and install the update.

The updating procedure consists of the following few steps: * Download a new jar-file to temporary directory * And
when Hugin is closed: * Rename existing hgui.jar to hgui.old * The new jar-file is moved to the location of the “old”
hgui.jar

If any of the above steps fail, the update will not be correctly installed. If the update is not correctly installed, the user
will be prompted to install the latest build each time the application is launched.

Experience has shown that the installation of an update may fail for many reasons such as insufficient privileges of the
user to save and rename files, security issues (e.g. related to firewalls, etc), etc.

When the installation fails, the update may be installed manually by downloading an updated jar-file from http://www.
hugin.com and replacing the existing hgui.jar file in the installation directory.

The check for updates functionality may be disabled under the Preferences menu by deselecting Check for updates.

4.8.40 What is Data Conflict Analysis?

Conflict analysis is the activity of detecting, tracing, and explaining possible conflicts among observations of variable
values (i.e., evidence or data). Inconsistencies among observations are easily detected (P(evidence) = 0), but also
flawed findings should be detected and traced. For example, in a diagnostic situation a single flawed test result may
take the investigation in a completely wrong direction. To understand what conflict analysis is and how it can be used,
there are several issues of interest: * Definition of Data Conflict (page 448): How do we define data conflict? * Conflict
Measure (page 449): How do we define an appropriate measure of data conflict? * Conflict Resolution (page 449):
How do we distinguish between a conflict and a rare case? * Tracing Conflicts (page 450): How do we identify the
pieces of evidence that contribute to a data conflict? * Hypothesis Variables (page 450): What set of uninstantiated
variables should be considered when searching for a hypothesis or observation that may eliminate the current conflict?
* Partial Conflicts (page 450): How * Individual Conflicts (page 450): How does each piece of evidence impact a
given hypothesis? * Hypothesis Driven Conflict Analysis (page 451): How does each piece of evidence impact a given
hypothesis?

Definition of Data Conflict

We define two sets of observations e1 and e2 to be in a possible conflict with one another if they are negatively
correlated.

For positively correlated findings we expect that P(e1`|e:sub:`2) > P(e1) and vice versa (i.e., observing e2 makes it more
likely to also observe e1 (and vice versa)). In other words, we expect that

𝑃 (𝑒1, 𝑒2) > 𝑃 (𝑒1)𝑃 (𝑒2)

if e1 and e2 are positively correlated,

𝑃 (𝑒1, 𝑒2) < 𝑃 (𝑒1)𝑃 (𝑒2)

if e1 and e2 are negatively correlated, and

𝑃 (𝑒1, 𝑒2) = 𝑃 (𝑒1)𝑃 (𝑒2)

if e1 and e2 are independent.

448 © Copyright 2020, HUGIN EXPERT A/S

http://www.hugin.com
http://www.hugin.com
http://www.hugin.com

HUGIN Graphical User Interface Documentation, Release 8.9

Conflict Measure

Therefore, given a set of observations (evidence), e = {e1,. . . ,en}, we define the conflict measure for e as

𝑐𝑜𝑛𝑓(𝑒) = 𝑙𝑜𝑔

∏︀𝑛
𝑖=1 𝑃 (𝑒𝑖)

𝑃 (𝑒)

If conf(e) is positive, e1,. . . ,en are negatively correlated, indicating a possible conflict among these pieces of evidence.
(The choice of base for the log function is immaterial.)

Notice, that if conf(e) is negative (i.e., no apparent conflict among e1,. . . ,en), then this gives you no guarantee that all
of e1,. . . ,en are positively correlated. It may well happen that there is a local conflict (i.e., that conf(e’) > 0 for a proper
subset e’ of e) although conf(e) < 0.

For more information about detection of local conflict, see the help page of the junction tree panel.

Conflict Resolution

There are situations in which a positive conflict measure is computed, where there is no real conflict. These include:

• Rare case: Typical data from a very rare case may indicate a possible conflict. If conf(e1,. . . ,en) > 0 and there is
a hypothesis H=h such that conf(e1,. . . ,en,h) < 0, then h explains away the conflict. That is, if H=h is the correct
hypothesis (e.g., a diagnosis) in the current situation, then there is no conflict.

• Missing observation: Basically the same situation, where conf(e1,. . . ,en) > 0 but conf(e1,. . . ,en,I=i) < 0, where
I=i is a missing piece of information. That is, there is a local conflict among e1,. . . ,en, but the observation I=i
explains the conflict.

By activating the button with the symbol, one can obtain a list of possible instantiations of currently uninstantiated
variables that can eliminate the current conflict. An example of the dialog box that appears when this button is activated
is shown in Figure 5.

Figure 5: Conflict resolutions dialog box. The box contains a list of possible instantiations of currently uninstantiated
variables that can eliminate the current conflict.

The dialog box contains a list of possible instantiations in the form

© Copyright 2020, HUGIN EXPERT A/S 449

HUGIN Graphical User Interface Documentation, Release 8.9

:: <CM>:<variable>=<value>

where <CM> is the new conflict measure obtained if <variable> is instantiated to <value>. Only instantiations (if any)
with a resulting conflict measure less than or equal to 0 get displayed.

The Instantiate button enters the currently selected instantiation (if any) as evidence.

Tracing Conflicts

Whenever a positive conflict has been observed that cannot be explained as a rare case, it is important to pinpoint the
piece (or pieces) of evidence that is in conflict with the majority of the pieces of evidence

Basically, this involves computation of conflict measures for subsets of the evidence. The junction tree is useful for
this purpose; see the help page for the junction tree panel for more information.

Hypothesis Variables

When searching for a hypothesis or observation that may eliminate the current conflict it may be desirable to restrict
the set of uninstantiated variables considered in the search. This is done by selecting a set of hypothesis variables. Any
subset of discrete chance nodes may be selected as hypothesis variables. Only the selected set of hypothesis variables
are considered in the search for instantiations that may eliminate the current conflict.

Partial Conflict Analysis

To support tracing the source of a conflict or to identify conflict in a subset of the evidence, partial conflict analysis
is possible. Here the partial conflicts for subsets of the evdience are computed. This is useful to trace the source of a
conflict in the overall entered and propagated evidence. To reduce the computational burden it is possible to define an
upper limit on the size of the subsets considered.

Individual Conflict Analysis

This functionality is useful to investigate the contribution of each individual finding to the overall conflict in the
evidence. To assess the contribution of each finding to the conflict we compute the normalized likelihood of that
finding given the other findings in the evidence.

450 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

The figure above shows an example where the conflict measure for the entire set of evidence is 0.2511. Using indi-
vidual conflicts it is possible to identify Smoker? as the finding that has the highest contribution to the evidence and
Dyspnoea? as the second highest contribution to the evidence as measured by the normalized likelihood.

Hypothesis Driven Conflict Analysis

So far we have considered data conflict analysis, i.e. how to identify, resolve, or explain a possible conflict in data. In
hypothesis driven data conflict analysis we investigate how each piece of evidence impacts a given hypothesis.

In hypothesis driven conflict analysis we investigate the impact of each piece of evidence on a given hypothesis. For
each piece of evidence (finding) f we compute the prior P(h) of the hypothesis, the posterior P(h|e) of the hypothesis
given the entire set of evidence e and the posterior P(h|ef) of the hypothesis given the subset of evidence where the
piece of evidence f under consideration is retracted.

Hypothesis driven conflict analysis allows the user to investigate how a single piece of finding impacts the probability
of the hypothesis.

A threshold value is applied to reduce the number of findings considered. Only results for findings where the cost-of-
omission is above the threshold are displayed where cost-of-omission is a measure of the distance between P(H|e) and
P(H|e\f).

© Copyright 2020, HUGIN EXPERT A/S 451

HUGIN Graphical User Interface Documentation, Release 8.9

4.8.41 Structural Uncertainties Help

The structure derived by the NPC algorithm contains ambiguous regions (i.e., groups of inter-dependent uncertain
links) and/or other undirected links. The current page of the Learning Wizard provides you with an intuitive graphical
interface for resolving these structural uncertainties.

Should you not wish to provide such information, just click the Next button, and the NPC algorithm will resolve the
uncertainties. Note, however, that directionality for undirected links will be decided on a random basis, and that for
those ambiguous regions with no information provided, all of the uncertain links will be removed, possibly resulting
in a poor model.

For more information on the NPC algorithm and the notions of undirected links and ambiguous regions, see the help
page of the previous page of the Learning Wizard.

Undirected Links

Instead of randomly determining the directionality of the links of the learned structure that cannot be determined
automatically from the data, the NPC algorithm gives the user the apportunity to determine the directionality of such
links. The undirected links (not belonging to ambiguous regions) are drawn in black. When selected, such a link gets
highlighted and the two directionality buttons get enabled:

or or or

Which of the above appearances of the pair of buttons are used depends on the relative positioning of the nodes of
the selected link. Thus, it should be readily apparent which of the two buttons should be selected for achieving the
desired directionality for the selected link. However, when positioning the mouse cursor on top of a button, a tool tip
will appear after a short while, explaining precisely which direction is associated with the button in question.

Note that assigning directionality to a link may cause other links to automatically be directed. If, for example, there are
undirected links between variables x and y, between y and z, and between x and z, then enforcing the directionalities
x –> y and y –> z implies x –> z; otherwise, a directed cycle would occur.

Ambiguous Regions

An ambiguous region consists of a set of inter-dependent uncertain links: Absence of a link in an ambiguous region
depends on the presence of one or more of the other links of the region, and vice versa. For more information on
ambiguous regions, see the help page of the previous page of the Learning Wizard. Each ambiguous region is easily
identified as consisting of links in the same color. (Note that there can be so many ambiguous regions that colors
have to be reused, making it difficult from the coloring alone to distinguish them.) Also, when selecting a link of an
ambiguous region, all links of the region will be highlighted; the one selected will be drawn bold and the other links
will be drawn with double lines.

When a link of an ambiguous region has been selected, the include/exclude link buttons get enabled:

When a decision has been made that a link should be present or absent, each of the other links of the ambiguous region
will be affected in one of several ways:

• Unaffected.

• Disappear.

• Turned into an undirected link, not belonging to the region anymore.

452 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• Turned into a directed link, not belonging to the region anymore.

Which of these consequence will be observed depends on the conditional independence and dependence statements
(CIDs) found from the statistical tests performed by the NPC algorithm. For more information see the help page of
the previous page of the Learning Wizard, or consult the references mentioned on that help page.

Undo

Often it is impossible (or very hard) to predict the consequences of a decision made regarding directionality of an
undirected link, or regarding the presence or absence of a link of an ambiguous region. Therefore, you will probably
find the undo facility of the current page of the Learning Wizard quite useful. The most recent (non-undo) action
performed can be undone by clicking the undo button:

Please note that an arbitrary number of operations performed can be undone by repeatedly clicking the undo button.

Importing Information

Pressing the “Import”-button : , allows for import of all network information, such as node positions, labels,
sizes, etc., from a net-file. This can be very useful, if the data relates to a network whose structure is known. In that
case, you can simply import the labels and positions of the nodes. The learned network can then easily be compared
to the existing one.

p-Value

Whether or not there is going to be a link between a pair of variables, say A and B, in the independence graph learned
from the data depends on the degree to which A and B are (conditionally) (in)dependent - if they are marginally
dependent, there will be a link; otherwise there won’t be a link. This degree is quantified through so-called p-values
associated with the hypothesis that the two variables are (conditionally) independent.

For each (small) set, C, of conditioning variables, a p-value for {A,B} is computed. This value expresses the prob-
ability that A and B are conditionally independent given C. The marginal p-value is the p-value corresponding to
C={}.

4.8.42 Structure Learning Help

At this point, the Learning Wizard is ready to learn the structure of the model from the (possibly preprocessed) data
and with the help of the possible structure constraints specified.

The user can select from six different algorithms for learning the structure of the model from data: The PC algorithm
(page 230), the NPC algorithm (page 231), the Greedy search-and-score algorithm (page 241), the Chow-Liu tree
algorithm (page 237), the Rebane-Pearl polytree algoritm (page 236) or the Tree Augmented Naive Bayes algorithm
(page 237). The first to algorithm (PC and NPC) are constraint-based approaches whereas the later two are both based
on the Chow-Liu algorithm for learning a tree representation of the underlying joint distribution.

Note that, in this step of the Learning Wizard, only the structure of the network is determined. The conditional
probability tables (CPTs) to be associated with the learned structure, will be learned in a subsequent step.

© Copyright 2020, HUGIN EXPERT A/S 453

HUGIN Graphical User Interface Documentation, Release 8.9

Constraint-Based Algorithms

Two pieces of information are needed in order to start the learning process using the PC or NPC algorithm: * the level
of significance (page 118) to use for the learning, and * the learning algorithm to be used; either the The PC algorithm
(page 230) or the NPC algorithm (page 231).

Level of Significance

The PC and NPC structure learning algorithms are based on making dependence tests that calculate a test statistic
which is asymptotically chi-squared distributed assuming (conditional) independence. If the test statistic is large for a
given independence hypothesis, the hypothesis is rejected; otherwise, it is accepted. The probability of rejecting a true
independence hypothesis is given by the level of significance:

The level of significance can be entered into this text field. The default value is set to 0.05, which should be appropriate
for most learning sessions, but it can take on any value in the open interval (0;1). In general, the higher the significance
level the more links will be included in the learned structure. Reducing the level of significance will usually also reduce
the running time of the structure learning algorithms.

The PC Algorithm

The PC algorithm, which is a variant of the original PC algorithm due to Peter Spirtes and Clark Glymour, belongs to
the class of constraint-based learning algorithms. The basic idea of these algorithms is to derive a set of conditional
independence and dependence statements (CIDs) by statistical tests.

The algorithm performs the following steps:

• Statistical tests for conditional independence are performed for all pairs of variables (except for those pairs for
which a structure constraint has been specified).

• An undirected link is added between each pair of variables for which no conditional independences were found.
The resulting undirected graph is referred to as the skeleton of the learned structure.

• Colliders are then identified, ensuring that no directed cycles occur. (A collider is a pair of links directed such
that they meet in a node.) For example, if we find that A and B are dependent, B and C are dependent, but A
and C are conditionally independent given S, not containing B, then this can be represented by the structure A
–> B <– C.

• Next, directions are enforced for those links whose direction can be derived from the conditional independences
found and the colliders identified.

• Finally, the remaining undirected links are directed randomly, ensuring that no directed cycles occur.

One important thing to note about the PC algorithm is that, in general, it will not be able to derive the direction of
all the links from data, and thus some links will be directed randomly. This means that the learned structure should
be inspected, and if any links seem counterintuitive (e.g., sweat causes fever, instead of the other way around), one
might consider going back and insert a constraint specifying the direction of the link, or use the NPC algorithm, which
allows the user to interactively decide on the directionality of undirected links.

Traditional constraint-based learning algorithms produce provably correct structures under the assumptions of infinite
data sets, perfect tests, and DAG faithfulness (i.e., that the data can be assumed to be simulated from a DAG). In the
case of limited data sets, however, these algorithms often derive too many conditional independence statements. Also,
they may in some cases leave out important dependence relations.

454 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Generally, it is recommended to use the NPC algorithm, as the resulting graph will be a better map of the (conditional)
independence relations represented in the data. In particular, when the data set is small, the NPC algorithm should be
the one preferred. The NPC algorithm, however, has longer running times than the PC algorithm.

The NPC Algorithm

NPC stands for Necessary Path Condition, and it is a criterion developed by researchers at Siemens in Munich for
solving some of the problems of constraint-based learning algorithms like the PC algorithm. The basic machinery is
the same in the PC and the NPC algorithms (i.e., they are both based on generating a skeleton derived trough statistical
tests for conditional independence).

The NPC algorithm seeks to repair the deficiencies of the PC algorithm, which occur especially in the face of limited
data sets. The solution provided by the NPC algorithm is based on inclusion of a criterion known as the necessary path
condition (page 455). This criterion forms the basis for introducing the notion of ambiguous regions (page 455), which
in turn provide a language for selecting among sets of inter-dependent uncertain links. The resolution of ambiguous
regions is performed in interaction with the user (see the next page of the Learning Wizard).

In constraint-based learning algorithms, the skeleton of the graph is constructed by not including a link in the induced
graph whenever the corresponding nodes are found to be conditional independent. There can, however, be inconsis-
tencies among the set of conditional independence and dependence statements (CIDs) derived from limited data sets.
That is, not all CIDs can be represented simultaneously. The inconsistencies are assumed to stem solely from sampling
noise; i.e., we still assume that there exists a perfect independence map of the (unknown) probability distribution from
which the data is generated.

The number of inconsistencies in the set of CIDs reflects structure model uncertainty. Thus, the number of uncertainties
is a confidence measure for the learned structure and can as such be used as an indication of whether or not sufficient
data has been used to perform the learning. The inconsistent CIDs produce multiple solutions when inducing a directed
acyclic graph (DAG) from them. These solutions differ with respect to the set of links included.

To resolve the inconsistencies, the NPC algorithm relies on user interaction where the user gets the opportunity to
decide on directionality of undirected links and to resolve the ambiguous regions (page 455).

The Necessary Path Condition

Informally, the necessary path condition says that in order for two variables X and Y to be independent conditional
on a set S, with no proper subset of S for which this holds, there must exist a path between X and every Z in S (not
crossing Y) and between Y and every Z in S (not crossing X). Otherwise, the inclusion of Z in S is unexplained. Thus,
in order for an independence statement to be valid, a number of links are required to be present in the graph.

Ambiguous Regions

When the absence of a link, a, depends on the presence of another link, b, and vice versa, we define a and b to be
inter-dependent. Both a and b are constitute what we call uncertain links. An ambiguous region is a maximal set of
inter-dependent links. That is, an ambiguous region consists of a set of uncertain links.

The main goal is to obtain as few and small ambiguous regions as possible. It should be noted that deterministic
relations between variables will also produce ambiguous regions.

The user is offered the possibility of providing information as to how the ambiguous regions should be resolved. The
next page of the Learning Wizard will provide an intuitive graphical interface for this interaction.

© Copyright 2020, HUGIN EXPERT A/S 455

HUGIN Graphical User Interface Documentation, Release 8.9

References

The interested reader is referred to the literature for a more detailed description of the notions behind the NPC al-
gorithm. See e.g. * Steck, H. (2001). Constrained-Based Structure Learning in Bayesian Networks Using Finite
Data Sets, PhD Thesis, Institut für der Informatik der Technischen Universität München. * Steck, H. and Tresp, V.
(1999). Bayesian Belief Networks for Data Mining, Proceedings of The 2nd Workshop on Data Mining und Data
Warehousing als Grundlage Moderner Entschidungsunterstuezender Systeme, DWDW99, Sammelband, Universität
Magdeburg, September 1999. * Steck, H., Hofmann, R., and Tresp, V. (1999). Concept for the PRONEL Learning
Algorithm, Siemens AG, Munich.

The Greedy Search-And-Score Algorithm

The greedy search-and-score algorithm for learning the structure of a Bayesian network uses a score function to
evaluate the goodness of a candidate network structure. The algorithm performs a search through the space of possible
network structures and returns the structure with the highest score. The operators used to perform the search given a
current candidate are add an arc, remove an arc and reverse an arc.

The candidate network structure is provided with a maximum likelihood estimate of the conditional probability tables
associated with the nodes of the network in order to compute the score of the candidate structure. If the data is
incomplete, the EM algorithm must be used. However, if the data is complete, this can be done by counting cases and
normalizing the counts.

For simplicity, we assume that the data is complete (by ignoring the missing data).

We also assume that the score function is decomposable. This means that the total score can be computed as a sum of
scores of the nodes in the network. This makes it easy to compute the effect of a simple modification to the network
(such as adding or removing an edge).

The user can chouse between using the Akaike Information Criterion (AIC) or the Bayesian Information Criterion
(BIC) as the score function.

The user can specify an upper limit on the number of parents of each node in the network structure.

Maximum Number of Parent

The user has the option to specify an upper limit on the number of parents in the network structure.

Chow-Liu Tree Based Algorithms

The Chow-Liu Tree Algorithm

The Chow-Liu algorithm is a structure learning algorithm that findsthe best tree representation of the joint distribution
induced bythe data.

A Chow-Liu tree is the best possible tree-shaped network approximation to a probability distribution such that all
edges are directed away from the root. The quality of the approximation is measured using the Kullback-Leibler
distance between the true distribution and the distribution defined by the Chow-Liu tree. When we learn from data,
the true distribution is defined by the frequencies of the observations. Chow and Liu (1968) show that the optimum
tree can be found as the maximum-weight spanning tree over all variables, where the weight of each edge is given as
the mutual information between the variables connected by the edge.

A Chow-Liu tree can be constructed as follows: * Calculate the mutual information MI(Xi, Xj) for each pair (Xi, Xj).
* Consider the complete MI-weighted graph: the complete undirected graph over {X,. . . ,Xn}, where the links (Xi, Xj)
have the weight MI(Xi, Xj). * Build a maximal-weight spanning tree for the complete MI-weighted graph. * Direct
the resulting tree by choosing any variable as a root and setting the directions of the links to be outward from it.

456 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

The Rebane-Pearl Polytree Algorithm

The Rebane-Pearl polytree algorithm constructs a polytree-shaped belief network approximation to a probability dis-
tribution (Rebane and Pearl, 1987).

The Rebane-Pearl algorithm is similar to the Chow-Liu tree algorithm (page 237) for constructing the “best possible”
tree-shaped belief network approximation to a probability distribution such that all edges are directed away from the
root. Instead of constructing a tree-shaped belief network approximation, the algorithm constructs a polytree-shaped
belief network.

Rebane-Pearl polytree recovery algorithm: The Chow-Liu algorithm constructs a simple tree structure (each node has
one parent — except the root). The Rebane-Pearl algorithm turns this tree into a polytree (each node can have multiple
parents, but the underlying network structure is still a tree).

The Tree Augmented Naive Bayes Algorithm

The Tree Augmented Naive (TAN) Bayes algorithm is based on theChow-Liu algorithm.

The TAN algorithm is useful for constructing classification networks where a specific node of the model is target of the
reasoning. The target node is used to construct a conditional Chow-Liu tree (i.e., a Chow-Liu tree over all nodes except
the selected target) with the selected root as root of the tree. Weights are defined as conditional mutual information
(conditional on the target), and all nodes (except target) have target as an extra parent.

References * C. K. Chow, C. N. Liu (1968). Approximating DiscreteProbability Distributions with Dependence Trees.
* G. Rebane, J. Pearl, (1987). The recovery of causal polytreesfrom statistical data.

© Copyright 2020, HUGIN EXPERT A/S 457

HUGIN Graphical User Interface Documentation, Release 8.9

458 © Copyright 2020, HUGIN EXPERT A/S

CHAPTER

FIVE

RELEASES

5.1 Release 6.0 November 2001

Version 6.0 of HUGIN Expert’s Bayesian network environment was released early November 2001.

The new release consists of a heavily improved HUGIN Decision Engine and a completely re-engineered graphical
user interface (GUI). The new GUI runs on a range of different platforms, as it is written in Java. Moreover, the
GUI contains a number of new features, including support for object-oriented construction of Bayesian networks,
supporting network construction with repeated changes of level of abstraction (i.e., top-down construction, bottom-up
construction, or a mix of the two). The handling of tables has also been improved, as multiple tables can be displayed
simultaneously and the display of tables can be turned on and off. The new GUI also provides a powerful zooming
capability, as the display of networks and monitor windows for discrete nodes can be scaled arbitrarily.

5.2 Release 6.1 April 2002

On April 15th, 2002 - we have released new versions of all HUGIN products. The new version of the HUGIN
Graphical User Interface is 6.1 and the new version of the HUGIN Decision Engine is v5.4.

The main features of this release are: The introduction of a Learning Wizard (page 249) including database connectiv-
ity in the Graphical User Interface, optimal triangulation and faster inference, adaptation in influence diagrams in the
Graphical User Interface, and improved stability of the Graphical User Interface.

The functionality of the Hugin Graphical User Interface has been extended with a Learning Wizard. The Learning Wiz-
ard (page 249) provides increased support for learning Bayesian networks from data. The Learning Wizard includes
support for data acquisition (database connectivity via ODBC, interface to Oracle databases, and plain text files), data
pre-processing, specification of domain expert knowledge (i.e., structural constraints and prior distributions), a data
dependency slider to detect the relative strengths of links as found in the data, generation of randomised conditional
probability distributions, etc.

A new triangulation method has been implemented. This method makes it possible to find a (minimal) triangulation
that has the minimum sum of clique state space sizes (i.e., an optimal triangulation). For large networks, this method
can improve time complexity of inference by an order of magnitude (sometimes even more), compared to the heuristic
methods provided by earlier versions of the HUGIN Decision Engine. The new triangulation method is available in
both the HUGIN APIs and in the HUGIN Graphical User Interface.

The computations performed by the HUGIN Decision Engine during the inference process have been reorganized to
make better use of the caches in modern CPUs. The result is faster inference.

The functionality of the Graphical User Interface with respect to adaptation has been extended to include adaptation
on the chance variables of an influence diagram.

Finally, a large effort has been put into increasing the stability of the HUGIN Graphical User Interface.

© Copyright 2020, HUGIN EXPERT A/S 459

HUGIN Graphical User Interface Documentation, Release 8.9

5.3 Release 6.2 January 2003

On January 13th, 2003 - we have released new versions of the HUGIN Graphical User Interface (v6.2) and HUGIN
Decision Engine (v6.0).

The main new features of this release are: support for object-oriented Bayesian networks (page 328) and influence
diagrams in the HUGIN Decision Engine, a new algorithm for learning the structure of a Bayesian network from a
database of cases in the HUGIN Graphical User Interface, and various other improvements of the HUGIN Graphical
User Interface.

The PC algorithm (page 230) for learning the graphical structure of a Bayesian network from a database of cases has
been extended with a necessary path condition. This condition is a necessary condition for the existence of a perfect
map of the conditional dependence and independence statements derived by statistical tests. This has produced a new
algorithm, which will be referred to as the NPC algorithm (page 231). The NPC algorithm has a number of advantages
over the PC algorithm. For instance, the user now has the possibility to interact with the learning process in order to
resolve structural uncertainties by making decisions on the presence or absence of uncertain edges. Both the PC and
the NPC algorithm now supports user decisions on the directionality of edges, which cannot be directed using data
alone. In the HUGIN Graphical User Interface it is now possible to learn arbitrarily complex structures, as tables for
the conditional probability distributions are not created as part of the structural learning.

Various other aspects of the HUGIN Graphical User Interface have been improved: node tables, belief monitors, and
operations on sets of nodes.

The node table has been greatly improved. For instance, expressions and manually specified tables can now coexist,
cut-and-paste functionality has been improved (e.g., it is possible to cut and paste to/from Excel), tables can be ex-
ported to text files, it is possible to work with bars instead of numbers and to have numbers and bars simultaneously,
the functionality for printing a table has been improved, and other new functionalities have been added to the node
table.

It is possible to specify different display mode for the belief monitors in runmode. This facilitates viewing the changes
in beliefs induced by a propagation of evidence.

It is now possible to perform an increased number of operations on sets of nodes (i.e., set type and set interface of sets
of nodes simultaneously).

Finally, the HUGIN Decision Engine has been extended with support for object-oriented Bayesian networks and
influence diagrams to make this functionality accessible through our Application Programming Interfaces (APIs).
This implies that object-oriented Bayesian networks and influence diagrams are now supported both by the HUGIN
Decision Engine and by the HUGIN Graphical User Interface.

5.4 Release 6.3 June 2003

On June 23rd, 2003 - we have released new versions of the HUGIN Graphical User Interface (v6.3) and HUGIN
Decision Engine (v6.1).

The main new features of this release are:

• Data conflict analysis (page 274)

• Case files (page 370)

• Thread-safe HUGIN Decision Engine

• User specified data preprocessing plugins

• Parameter learning wizard

• Various improvements of HUGIN Graphical User Interface

460 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Data conflict analysis (page 274) is the activity of detecting, tracing, and resolving possible conflicts among observa-
tions of variable values. The Hugin Graphical User Interface and HUGIN Decision Engine now support identification
of potential conflicts in observations and hypothesis driven conflict resolution.

The HUGIN Graphical User Interface and HUGIN Decision Engine now support the use of case files. Case files make
it possible for the user to save evidence entered in a domain in a case file for easy reload.

The HUGIN Decision Engine has been extended to support safe usage in a multi-threaded application. It is now
possible to safely use the HUGIN Decision Engine in multi-threaded applications where threads process their own
local domains or applications where threads access a common domain. In the last scenario, it is necessary to explicitly
ensure mutual exclusion.

Support for loading user specified preprocessing plugins have been included in the learning wizards of the HUGIN
Graphical User Interface. This enables the user to use her own data preprocessing functionality directly in the HUGIN
Graphical User Interface.

The functionality of the HUGIN Graphical User Interface has been extended with an additional Learning Wizard - the
EM Learning Wizard. The EM Learning Wizard increases the user support for learning the parameters of Bayesian
networks from data. The EM Learning Wizard (page 263) includes support for data acquisition (database connectivity
via ODBC, interface to Oracle databases, and plain text files), data preprocessing, specification of domain expert
knowledge on parameters, generation of randomized conditional probability distributions, etc.

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• Import of network information (groups, colors, node sizes, etc).

This is very useful in documentation of networks, but also for structural learning of Bayesian networks, where loading
and saving structural constraints is now supported.

• Curved and piecewise linear arrows between nodes. This makes it possible to avoid having arrows and nodes
overlap.

• View the junction tree structure (useful for conflict analysis).

• Individual node sizes

• Improved print functionalities (e.g multi-page networks and selection of printer).

Finally, the heuristic measure used by the HUGIN Decision Engine as part of the total-weight triangulation has been
improved to give better results on large networks.

5.4.1 User feedback form

HUGIN Expert A/S has a continuous interest in the opinion of the users of HUGIN software and we wish to improve
our software in line with our customers needs. For this reason the HUGIN Graphical User Interface has been extended
with a questionnaire, which we kindly ask our users to complete. The user feedback will help us to improve our
software and to guide the development of the software and keep it exciting to use. We sincerely hope that many of you
will spend a few minutes in helping us improving ourselves.

© Copyright 2020, HUGIN EXPERT A/S 461

HUGIN Graphical User Interface Documentation, Release 8.9

5.5 Release 6.4 March 2004

On March 2nd, 2004 - we have released new versions of the HUGIN Graphical User Interface (v6.4) and HUGIN
Decision Engine (v6.2).

The main new features of this release are:

• The HUGIN Graphical User Interface now includes a tool for analysing dependence and independence relations
between nodes given evidence (d-separation) (page 270)

• Automatic update of HUGIN Graphical User Interface (receive and install updates automatically)

• Compressed and password protected hkb-files

• Various improvements of HUGIN Graphical User Interface including a substantial improvement of the speed of
the HUGIN Graphical User Interface

• The HUGIN Decision Engine now has support for EM learning (page 334) in object-oriented Bayesian networks
(page 328)

5.5.1 HUGIN Graphical User Interface v6.4:

A tool for performing dependence and independence analysis between nodes of a probabilistic graphical model (i.e.
Bayesian network or influence diagram) has been included in the HUGIN Graphical User Interface. This tool enables
the user to perform d-separation analysis on sets of variables given selected sets of evidence variables. This tool is
particularly useful in the knowledge acquisition phase for validating the dependence and independence properties of
the model.

The HUGIN Graphical User Interface now supports live updating. This feature - when enabled - will make the HUGIN
Graphical User Interface automatically check for available updates from our web site.

The HUGIN Graphical User Interface now uses compressed hkb-files (HUGIN Knowledge Base files). Furthermore,
password protected hkb-files is now an option. Password protection of hkb-files is useful when models are distributed
as part of an end-user application.

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• Considerable efforts have been put into improving the speed of the HUGIN Graphical User Interface.

• “Live” node resize. This feature enables the user to resize nodes by dragging.

• It is possible to view the fading, experience, and expression tables for a node at the same time as she is viewing
the conditional probability table of the node.

• Parameter learning and adaptation for discrete chance nodes in influence diagrams and mixed Bayesian networks
is now supported by the HUGIN Graphical User Interface.

• Simulation of node instantiations (i.e., generation of cases) is now supported for mixed Bayesian networks.

• The HUGIN Graphical User Interface now has improved support for locating nodes in large models. This feature
enables the user to search for a node in a large network by its name.

• The user can select to show node names and/or labels in the nodes.

• The user can set the precision used to display the entries of a table.

• It is possible to print a junction forest to a file or a printer.

• Monitor resizing. This feature enables the user to resize node monitors (page 183) for better display of results
of propagation.

462 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• It is possible to set the number of samples per interval used by the Table Generator when generating the table
for a discrete node given parent interval nodes.

• The user can select to view either node state labels or values in conditional probability tables.

• The HUGIN Graphical User Interface now has better support for navigating instance nodes and entering evi-
dence on nodes in instance nodes of a compiled network. The user has the option to transfer evidence from a
compiled subnet to a corresponding instance in a different compiled network.

5.5.2 HUGIN Decision Engine v6.2:

The HUGIN Decision Engine now has support for parameter learning in object-oriented Bayesian networks using the
EM (Expectation Maximization) algorithm. This feature enables the user to exploit the composition of an object-
oriented Bayesian network when estimating conditional probability tables from data.

The HUGIN Decision Engine now uses compressed hkb-files (HUGIN Knowledge Base files). Furthermore, password
protected hkb-files is now an option. Password protection of hkb-files is useful when models are distributed as part of
an end-user application.

The HUGIN Decision Engine supports parsing a set of nodes from a file. This is, for instance, useful for loading
triangulations from a file. The HUGIN Decision Engine also supports parsing a database of cases stored in an ASCII
text file. This is useful when learning Bayesian networks from data.

5.6 Release 6.5 December 2005

On December 7th - we are have released new versions of the HUGIN Graphical User Interface (v6.5) and HUGIN
Decision Engine (v6.3).

The main new features of this release are:

• The data mining functionality of the HUGIN Graphical User Interface has been improved with a number of new
features.

• Improved support for object-oriented models in the HUGIN Decision Engine and HUGIN Graphical User Inter-
face.

• Various improvements to the HUGIN Graphical User Interface including new features such as network layout,
network documentation, table import and export online drag & drop help functionality to name a few.

5.6.1 Hugin Graphical User Interface v6.5:

The data mining functionality of the HUGIN Graphical User Interface has been improved with a number of new
features:

• The Learning Wizard of the HUGIN Graphical User Interface now includes a tool for determining the set of
minimal resolutions of ambiguous regions. This tool has been added because the NPC algorithm (page 231) for
learning the structure of a Bayesian network model may produce a set of ambiguous regions indicating structure
uncertainties. This tool is very helpful when an ambiguous region includes a large number of edges.

• An algorithm for graph layout has been included in the Learning Wizard (page 249). This functionality is
particularly useful after structure learning. If the user has installed the program called “dot”, the user interface
may be parameterized to use this program instead of its internal algorithm.

• A data analysis tool has been included in the data acquisition step of the Learning Wizard. This tool enables the
user to see the values recorded in the data for each variable. This tool is particularly useful when continuous
variables are included in the data as it also supports discretization.

© Copyright 2020, HUGIN EXPERT A/S 463

HUGIN Graphical User Interface Documentation, Release 8.9

Support functionality for object-oriented models in the HUGIN Graphical User Interface has been extended to include
a number of new features:

• A new file name suffix (“.oobn”) has been introduced in order to better distinguish network files specifying an
object-oriented model from network files specifying a flat model.

• The class of an instance node can easily be replaced by another class with an equivalent interface.

• It is now possible to rotate the interface of an instance node. This functionality may be useful when building
time-sliced models.

The HUGIN Graphical User Interface has been extended with a number of features supporting the model development
process: * Better display of the network log information and a separate usage log window. * Automatic documentation
of models. This feature enables the user to produce HTML documentation of a network, including the descriptions
included in the network. * A print preview has been included in the printing functionality (page 161). Online help has
been improved to support drag’N’drop.

The HUGIN Graphical User Interface has been improved with various new features. This includes: * An arc
(page 148) between two continuous variables can be reversed. * It is possible to perform a node absorption operation
on discrete chance nodes. This enables the user to eliminate nodes from a model without changing the underlying
probabilistic relations between the remaining nodes of the model. * It is now possible to both import and export tables
to flat text files. Table import is particularly useful when a table has been generated using a different tool. * The graph
layout algorithm is also available outside the Learning Wizard. * Finally, efforts have been put into improving the
stability of the HUGIN Graphical User Interface.

5.6.2 Hugin Decision Engine v6.3:

The HUGIN Decision Engine has improved support for object-oriented models. The HUGIN Decision Engine has
been extended with functionality to replace the class of an instance node with another class with an equivalent interface.
In addition, a similar function for replacing a parent of a node with another equivalent parent has been included. This
allows the user to substitute classes and parents without loosing the tables of effected nodes.

5.7 Release 6.6 September 2005

On September 12th, 2005 - we have released new versions of the HUGIN Graphical User Interface (v6.6) and HUGIN
Decision Engine (v6.4).

The main new features of this release are:

• Improved data mining functionality of the HUGIN Graphical User Interface.

• Value of Information analysis (page 294) on discrete random variables in Bayesian networks and influence
diagrams in both the HUGIN Decision Engine and the HUGIN Graphical User Interface.

• Improved performance of the HUGIN Decision Engine with respect to inserting and propagating multiple pieces
of hard evidence in the junction forest.

• HUGIN Decision Engine libraries for Windows platforms are now provided for Visual Studio .NET 2003 (in
addition to Visual Studio 6.0).

464 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

5.7.1 Hugin Graphical User Interface v6.6:

The Learning Wizard (page 249) of the HUGIN Graphical User Interface has been improved with a number of new
features:

• The Data Analysis tool of the Learning Wizard shows a number of statistics on the data analyzed including an
indication of the amount of missing data and the number of distinct values for each variable.

• The Data Dependency window of the Learning Wizard reports the p-value of an edge when the edge is selected
and model size when the edge is deselected.

• The Structure Uncertainties window of the Learning Wizard reports the p-value of an edge when the edge is
selected.

• The log information generated as part of the learning process is available to the user for inspection after com-
pleting the Learning Wizard.

The EM Learning Wizard (page 263) of the HUGIN Graphical User Interface has been improved with a number of
new features:

• The EM algorithm reports the log-likelihood of the model given data to the network log after each iteration.

• The log information generated as part of the learning process is available to the user for inspection after com-
pleting the EM Learning Wizard.

A few features related to the learning functionality of the HUGIN Graphical User Interface have been included or
improved:

• Better display of the network log information and a separate usage log window.

• Automatic documentation of models. This feature enables the user to produce HTML documentation of a
network, including the descriptions included in the network.

• A print preview has been included in the printing functionality.

• Online help has been improved to support drag’N’drop.

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• A line specifying the data file used for structure learning has been included in the Structure Learning window.

• A line specifying the data file used for parameter learning has been included in the EM Learning window.

• It is now possible to add experience tables to all selected discrete chance nodes.

• It is now possible to add fading tables to all selected discrete chance nodes.

• An invocation of “generate table” is enforced on all nodes with a model prior to parameter learning using the
EM Learning Wizard. This ensures that the conditional probability table of each node has been generated form
the model and it will be shown in the Prior Distribution window of the EM Learning Wizard.

• The explicit creation of experience tables for all discrete chance nodes has been disabled prior to parameter
learning using the EM Learning Wizard. This implies that the user must create experience tables prior to using
the EM Learning Wizard or in the Prior Distributions step of the EM Learning Wizard.

The HUGIN Graphical User Interface have been extended with support for value of information analysis on discrete
random variables in Bayesian networks and influence diagrams. Value of information analysis is based on computing
entropy and mutual information on nodes and pairs of nodes.

The functionality of the HUGIN Graphical User Interface supporting object-oriented models has been extended to
include a few new features:

• It is no longer a requirement that object-oriented models are saved with “.oobn” suffix (both .net and .oobn are
supported).

© Copyright 2020, HUGIN EXPERT A/S 465

HUGIN Graphical User Interface Documentation, Release 8.9

• Improved functionality for saving and loading object-oriented models with expanded / collapsed instance nodes.
If an instance node is expanded when the model is saved, then the instance node will be expanded and placed at
the same location when the model is loaded subsequently.

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• Functionality for loading and saving node elimination orders in the HUGIN Graphical User Interface. This is
very useful when a good or even optimal triangulation of a network is available or has been identified.

• Help facilities made available in the “Update HUGIN” window. Due to strict security policies some users
have experienced problems using the “live update” functionality of the HUGIN Graphical User Interface. Help
facilities have been included in order to clearly explain how to update the installation in case of problems
performing the “live-update”.

• Improved usage log information.

• Probabilities and utilities are shown as inconsistent when switching from edit mode to run mode on a previously
compiled domain when tables have been updated.

• Using right mouse pop-up menu to change the subtype of a node to numbered creates a node with states starting
at 0 . . . (not 1 as was previously the case).

• The functionality for graph Layout now supports continuous chance nodes and instance nodes.

Finally, efforts have been put into improving the stability of the HUGIN Graphical User Interface.

5.7.2 HUGIN Decision Engine v6.4:

The HUGIN Decision Engine has been extended with the following features:

• Functions for computing entropy and mutual information have been added. These functions are useful for value
of information analysis.

• Direct access to the pseudo-random number generator implemented in HUGIN Decision Engine is now provided
through API functions.

• The EM algorithm reports the log-likelihood of the model given data to the network log after each iteration.

• Improved performance of the HUGIN Decision Engine with respect to inserting and propagating multiple pieces
of hard evidence in the junction forest.

Finally, HUGIN Decision Engine libraries for Windows platforms are now provided for Visual Studio .NET 2003 (in
addition to Visual Studio 6.0).

5.8 Release 6.7 June 2006

On June 27th, 2006 - we have released new versions of the HUGIN Graphical User Interface (v6.7) and HUGIN
Decision Engine (v6.5).

The main new features of this release are:

• Sensitivity to Evidence (SE) Analysis (page 281) on discrete random variables in Bayesian networks and influ-
ence diagrams in the HUGIN Graphical User Interface.

• Improved conflict resolution dialog (page 274) of the HUGIN Graphical User Interface.

• Improved value of information dialog (page 294) of the HUGIN Graphical User Interface.

466 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

5.8.1 HUGIN Graphical User Interface v6.7:

The HUGIN Graphical User Interface has been extended with support for sensitivity to evidence (SE) analysis on
discrete random variables in Bayesian networks and influence diagrams. SE analysis includes determining minimum
and maximum posterior beliefs, impact of evidence analysis, discrimination between competing hypotheses, what-if
analysis, and sensitivity to findings:

• Determining minimum and maximum beliefs is useful for analysing the sensitivity of a hypothesis variable
relative to an unobserved variable.

• Evidence impact analysis investigates the impact of various subsets of the evidence on a hypothesis by comput-
ing the normalized likelihoods of the hypothesis given the evidence.

• Discrimination between competing hypotheses is based on the calculation of Bayes’ factor. This analysis sup-
ports the identification of subsets of the evidence which discriminates between two hypotheses.

• What-if analysis investigates the impact of changing the value of an observed variable on the posterior distribu-
tion of a hypothesis variable.

• Sensitivity to findings analysis analyses the impact a single finding has on the posterior probability of a hypoth-
esis.

The Value of Information analysis dialog of the HUGIN Graphical User Interface has been improved with new features:

• The dialog now gives a graphical representation of the mutual information score between each information
variable and the target node.

• The mutual information score between the target and each information variable is compared to the entropy of
the target node.

• The precision of the displayed mutual information score is sensitive to the selected precision.

The Conflict Resolution dialog of the HUGIN Graphical User Interface has been improved with a number of new
features:

• The dialog now has the option of selecting the set of possible hypothesis variables.

• The dialog gives a graphical representation of the value of the conflict measure after resolution for each possible
conflict resolution.

• The precision of the displayed conflict measure score is sensitive to the selected precision.

• It is possible to perform hypothesis driven conflict analysis. This enables the user to investigate the impact of
individual findings on the posterior probability of the hypothesis.

• Support for tracing the source of a possible conflict has been improved. The user may compute partial conflicts
for all subsets of a selected set of evidence.

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• Simulation of chance variables in Run-Mode. This functionality allows the user to simulate an instantiation of
all variables given the inserted evidence.

• The menu items under the “Network” menu have been rearranged. An “Analysis” menu item has been intro-
duced.

• Monitors and node lists are now updated immediately after entering a value on a continuous chance node (as
opposed to after the propagation).

• Functionality for reporting the beliefs of a selected node or all nodes to the Network Log has been included.

• The entropy of a discrete chance node is shown in the Usage Log when the node is selected in run-mode.

• The mutual information score between two discrete chance nodes is shown in the Usage Log (in Run Mode
only) when selecting their connecting edge.

© Copyright 2020, HUGIN EXPERT A/S 467

HUGIN Graphical User Interface Documentation, Release 8.9

• Improved support for long menus (e.g. long menus may appear as a result of having loaded a large number of
classes).

• d-separation (page 270) analysis is now possible for NetworkModels in edit mode.

• Functionality for rearranging node states has been included.

• Functionality for printing monitor windows with the graph of a model has been included.

• It is now possible to include monitor windows when writing a model as BMP.

• It is possible to replace a parent node of a child node without losing the table of the child in the process.

Finally, efforts have been put into improving the stability of the HUGIN Graphical User Interface.

5.8.2 HUGIN Decision Engine v6.5:

The HUGIN Decision Engine has been extended with the following features:

• Functions for computing the AIC and BIC scores have been included. AIC and BIC are scores of comparing
model quality taking model complexity into account.

• It is now possible to enter a data case as evidence using a single function. This is, for instance, useful for
iterating over all data cases and computing posterior beliefs.

• Functions for getting the state index of a discrete chance or decision node corresponding to a value or a label
have been included. This is particularly useful for inserting evidence on a node with interval subtype.

• Functionality for performing d-separation analysis (page 270) has been included. This includes two functions
for obtaining the nodes that are d-connected and d-separated to a set nodes, respectively, given a set of hard and
a set of soft evidence.

• Functionality for cloning nodes and domains has been included.

In addition some minor revisions have been made to existing functionality of the HUGIN Decision Engine:

• The amount of case data which can be handled by the learning algorithms has been doubled (given the same
amount of physical memory).

• The HUGIN API now supports simple labels without quotes in case and data files (as opposed to requiring labels
always to be quoted).

• The EM algorithm reports the AIC and BIC scores to its log file after completion of parameter estimation.

• Default labels for Boolean nodes have been changed to “false” and “true” in the HUGIN C API and HUGIN
ActiveX server.

• The h_domain_get_log_likelihood function (in the HUGIN C API and equivalent functions in other HUGIN
APIs) now return the log-likelihood using the actual parameter values (as opposed to using the parameter values
of the penultimate iteration when using EM).

468 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

5.9 Release 6.8 April 2007

On April 18th 2007 - we have released new versions of the HUGIN Graphical User Interface (v6.8) and HUGIN
Decision Engine (v6.6).

The main new features of this release are:

• A new HUGIN .NET API is introduced with this release

• 64-bit versions of the HUGIN Graphical User Interface and most APIs

• Support for Unicode in the HUGIN software (Graphical User Interface, Java and .NET APIs)

• A Data Analysis Wizard (page 242) in the HUGIN Graphical User Interface

• Value of information analysis (page 294) on decisions in influence diagrams in the HUGIN Graphical User
Interface

• Hypothesis driven conflict analysis in the HUGIN Graphical User Interface

5.9.1 HUGIN Graphical User Interface v6.8:

The HUGIN Graphical User Interface has been extended with a Data Analysis Wizard. The Data Analysis Wizard
allows the user to analyse a model by computing AIC and BIC scores given a set of data, illustrating mutual information
scores of all links in the graph and data accuracy on a data set. The Data Analysis Wizard also supports generation of
data.

The Value of Information dialog of the HUGIN Graphical User Interface has been improved with a new feature:

• The Value of Information (page 294) (VOI) Dialog has been extended to include VOI analysis on decisions
in influence diagrams. Value of information analysis on a decision variable may help the decision maker to
determine if an additional observation on a discrete chance node will improve the maximum expected utility of
the decision under consideration.

The Conflict Resolution dialog of the HUGIN Graphical User Interface has been improved with a new feature:

• The Conflict Analysis Dialog (page 274) has been extend with support for hypothesis driven conflict analysis on
all states or a single state.

The Evidence Sensitivity Analysis dialog of the HUGIN Graphical User Interface has been improved with a new
feature:

• The Evidence Sensitivity Analysis (page 281) dialog now has a progress bar for calculations that require a
large number of propagations. This includes the option to terminate the calculation before all propagations are
performed.

• It is possible to discriminate between two hypotheses corresponding to states of the same hypothesis variable.

The HUGIN Graphical User Interface has been extented with functionality for computing the convolution of distribu-
tions:

• A Convolution and XOI loss model (page 305) dialog for computing total impact based on the exposure, occur-
rence, and impact model has been included.

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• The HUGIN Graphical User Interface now supports the use of class collections. It is possible to load and save
a class collection. A class collection contains a set of class definitions. Class collections allow the user to store
multiple class definitions in a single file.

• A new tool, called “View Component Tree”, gives a graphical overview of all classes instantiated in a single
network class and its subclasses, etc.

© Copyright 2020, HUGIN EXPERT A/S 469

HUGIN Graphical User Interface Documentation, Release 8.9

• The HUGIN Graphical User Interface reports the resulting number of states of a chance or decision node when
adding states. Also, the number of states of a selected decision node is reported.

• Possibility to view probabilities in node tables with a forced number of decimals instead of scientific notation.

• A new “Case Manager Tool” makes it easy to manage and switch between multiple evidence scenarios in a
network. The tool supports loading and saving of multiple cases as a HUGIN data file.

• An option to relax the type checking on bounding links (i.e., a link from a node to an input node) has been
included. This allows the user to choose to have the type checking performed at compile time. Default behaviour
is to perform type checking when a link is added to the model.

• In the Learning Wizard (page 249) a minimal solution to an ambiguous region consists of a number of uncertain
edges. If there are multiple minimal solutions to an ambiguous region, the user has to select one of the possible
solutions. To guide this selection the weight and p-value of an uncertain edge is displayed in the status bar when
the uncertain edge is selected.

• Monitor windows (page 183) for continuous chance nodes now support retract evidence.

• GUI response when editing large CPT’s have been speeded up.

• A simple tool - The States Generator (page 205) - for generating and coping states of discrete nodes has been
developed. This tool is particularly useful for specifying states of numbered and interval nodes.

• The continuous-discrete node value transfer function (CDVT function (page 302)) implements support for link-
ing a continuous node to a interval chance node. The table for the interval chance node will be generated by the
tool from an expression equal to the posterior marginal distribution of the continuous node. This implement a
simple method for discrete children of continuous nodes using discretization with support for forward reasoning
along the CDVT function link.

• The “Enter Likelihood Evidence” dialog (page 140) shows labels or state values depending on the selection of
the user in the table of the corresponding node.

• When a numbered discrete chance node is selected in Run-Mode, the status bar will show the average of the
node. All state values of the node should be finite.

• The compilation process reports the approximate and compression rate to usage log.

• Unicode support is offered with respect to node and state labels as well as filenames. Node names do not include
support for unicode.

• This release include 64-bit versions of the HUGIN Graphical User Interface. The 64-bit version is offered as a
separate package with 64-bit versions of the HUGIN C/C++/.NET/Java APIs.

Finally, efforts have been put into improving the stability of the HUGIN Graphical User Interface.

5.9.2 HUGIN Decision Engine v6.6:

The HUGIN Decision Engine has been extended with the following features:

• A new .NET API is now available for the Windows platforms. This API targets the .NET 2.0 framework.

• API libraries for the Windows platforms are now provided for Visual Studio 2005 (in addition to Visual Studio
6.0 and Visual Studio .NET 2003).

• The APIs (except the Visual Basic API) are now available as 64-bit versions on all platforms except Mac OS X.
On the Windows platforms, the 64-bit libraries are only provided for Visual Studio 2005.

• A new naming scheme has been introduced for the API libraries on the Windows platforms: The libraries are
now uniquely named, making it possible to have all DLLs in the search path simultaneously.

• d-separation analysis is now used to improve the performance of inference. This is particularly useful for
incremental propagation of evidence in large networks.

470 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• The performance of the total-weight triangulation method has been greatly improved.

• The triangulation functions now construct junction trees, but do not allocate storage for the data arrays of the
clique and separator tables. This permits the application to see the junction trees before attempting the final (and
most expensive) part of the compilation process.

• It is now possible to query the size of a junction tree (even before storage is allocated for the junction tree tables).

• A function for testing whether a domain is triangulated is now provided.

• The HUGIN KB file format has changed (in order to handle HKB files produced by 64-bit versions of the API,
among other things).

There are a few user-visible changes:

• If a compiled (but not compressed) domain is saved as an HKB file, it will only be triangulated when loaded. A
compilation is required before inference can be performed. Compressed domains are still loaded as compressed
(which implies compiled), but a propagation is required before beliefs can be retrieved.

• Functions for converting between table indexes and state configurations are now provided.

• A function to retrieve the CG size of a table is provided.

5.10 Release 6.9 November 2007

On November 5th 2007 - we have released new versions of the HUGIN Graphical User Interface (v6.9) and HUGIN
Decision Engine (v6.7).

The main new features of this release are:

• Parameter Sensitivity Analysis (page 317) in HUGIN Graphical User Interface and APIs. This includes a Pa-
rameter Sensitivity Wizard in the HUGIN Graphical User Interface

• Internationalization of HUGIN Graphical User Interface (distributions include support for English and Japanese
languages)

• An Adaptation Wizard (page 250) in the HUGIN Graphical User Interface

HUGIN Graphical User Interface v6.9:

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• A Parameter Sensitivity Analysis Wizard (page 270). The Parameter Sensitivity Analysis Wizard aids the user
in the process of identifying the most influential (conditional probability) parameters of a model and analyzing
their effects on the “output” probabilities of the model.

• A Color Chart (page 143) is displayed in conjunction with a node table for discrete nodes. The purpose of the
color chart is to show where the large values are concentrated.

• The Learning Wizard (page 249) now supports the specification of constraints between a node and a subset of
nodes.

• The performance of the EM learning algorithm has been improved significantly by saving the initial clique
potentials to memory, if possible. This improves the time efficiency of learning CPTs significantly, but increases
the memory usage.

• A “Save to memory” (page 124) option has been added to Network Properties (page 167). The save-to-memory
operation stores a copy of the initial clique potentials in memory. This implies a faster initialization process
which may improve efficiency of performing multiple propagations (e.g., as part of the Analysis Wizard).

© Copyright 2020, HUGIN EXPERT A/S 471

HUGIN Graphical User Interface Documentation, Release 8.9

• An adaptation wizard (page 250) has been added. The adaptation wizard allows for performing batch adaptation
using a number of HUGIN case and data files. Experience counts and posterior marginal distributions can be
recorded as they develop during adaptation, and can be plotted as a graph.

• Japanese language support (page 189).

• Functionality has been added for computing the joint probability distribution over a set of discrete chance nodes.

• The HTML help pages have been extended with search facilities. In addition, the HTML help pages have been
updated with a case and data files tutorial. Also, revisions have been made to the tutorial on adaptation and EM
learning.

• Node (page 197) and Domain descriptions (page 167) support the use of HTML tags.

• It is possible to resize the dialog for inserting likelihood evidence (page 140).

• The conflict resolution button is enabled when evidence has been propagated. This allows the user to investigate
subsets of the evidence when there is no conflict in the entire set of evidence.

• A JDBC interface has been added to the Wizards supporting database connectivity.

• A Cases/Beliefs panel has been added to the Analysis Wizard (page 242). This allows the user to compute and
display the posterior probability of a hypothesis for a large number of cases.

• GUI response when working with large networks has been speeded up.

• Belief bars can be forced to render in scientific notation.

• The status bar reports the mean and variance for discrete numerical nodes when selected in run-mode.

• The status bar reports the mean and variance for continuous nodes when selected in run-mode.

• The selection of a continuous chance node reports the size of the node table to the status bar.

• The title of a network window now specifies whether a network is a “net” (i.e., non class model) or a “class”
model.

Finally, efforts have been put into improving the stability of the HUGIN Graphical User Interface.

5.10.1 HUGIN Decision Engine v6.7:

The HUGIN Decision Engine has been extended with the following features:

• Sensitivity analysis: Functions to aid in the process of identifying the most influential (conditional probability)
parameters of a model and analyzing their effects on the “output” probabilities of the model are now provided.

• New statistical distributions: LogNormal, Triangular, and PERT.

• An optional location parameter has been added to the Gamma, Exponential, and Weibull distributions.

• Truncated continuous distributions can be expressed using a new truncation operator: It is possible to specify
double as well as single truncation (single truncation is either left or right truncation).

• It is now possible to combine expressions of different types in conditional expressions. This permits specification
of relationships that are sometimes probabilistic and sometimes deterministic.

• The performance of the operation for computing marginals on sets of nodes has been improved.

• The performance of inference has been improved for cases in which a memory backup is not available.

472 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

5.11 Release 7.0 September 2008

On September 8, 2008 - we have released new versions of the HUGIN Graphical User Interface (v7.0) and HUGIN
Decision Engine (v7.0).

The main new features of this release are:

• Limited memory influence diagrams (LIMIDs) (page 327) replace influence diagrams as the tool for modeling
decision problems. The LIMID representation removes two fundamental assumptions of the traditional influ-
ence diagram: A non-forgetting decision maker and a total order of the decisions. By removing these two
assumptions, the LIMID representation implies a significant improvement in the support for modeling decision
problems. In addition to supporting the LIMID representation, the tool has been updated to supply the user with
additional information related to a decision model (e.g., show policies and both decision and chance nodes have
a probability distribution and an expected utility function determined by the current strategy).

• The new Expression Builder Wizard (page 256) makes it easier to build an expression by dividing the process
into steps that allow the user to concentrate on building one simple expression at a time while keeping an
overview of the complete expression.

HUGIN Graphical User Interface v7.0:

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• The new constraints panel (page 133) of the Parameter Sensitivity Analysis (PSA) Wizard (page 270) allows the
user to specify constraints on the posterior probability of a hypothesis variable and apply the smallest change
necessary to satisfy it. The changes can be confirmed in the PSA panel.

• The color map in the PSA panel displays Min/Max parameter sensitivity values instead of parameter values.

• Improved performance of the parameter sensitivity analysis in the PSA Wizard.

• The hypothesis variable drop-down box in the PSA panel marks nodes with evidence as the analysis cannot be
performed on instantiated nodes.

• The clear button in the PSA panel now also initializes the network.

• The graph info table in the PSA panel supports the selection of a line description (row) that results in displaying
the selected line in the graph. (Useful when performing analysis on all states of the hypothesis.)

• The graph (PSA panel) displays upper and lower bounds for the sensitivity function.

• Display of Markov Blanket (page 120).

• The Data Analyzer Tool in the Data Preprocessing panel of the Learning Wizard (page 249) now allows the
discretization of multiple numerical variables.

• The Learning Wizard and the EM Learning Wizard (page 263) have been improved with functionality for re-
porting different pieces of information relevant for the learning process.

• ROC analysis is now available as a part of the Analysis Wizard (page 242)

• The results displayed in the “Cases/Belief”-tab of the Analysis Wizard can be exported as a CSV file.

• A Correlation Analysis Dialog (page 311) allows the user to investigate the correlation between any pair of
discrete chance nodes in a Bayesian network.

• The Min-Max panel of the Evidence Sensitivity Dialog (page 281) shows the results as graphs and numbers
instead of as tables of numbers.

• Better support for running the HUGIN Graphical User Interface on Windows Vista.

• Other minor improvements.

Finally, efforts have been put into improving the stability of the HUGIN Graphical User Interface.

© Copyright 2020, HUGIN EXPERT A/S 473

HUGIN Graphical User Interface Documentation, Release 8.9

5.11.1 HUGIN Decision Engine v7.0:

The HUGIN Decision Engine has been extended with the following features:

• HUGIN API libraries for the Windows platforms are now provided for Visual Studio 2008 (in addition to Visual
Studio 6.0, Visual Studio .NET 2003, and Visual Studio 2005).

• The “h_domain_compile” function now initializes the junction trees using the available evidence (if any).

• The “h_class_create_domain” function now assigns unique “meaningful” names to the nodes of the created
domains. This is accomplished by allowing “dotted names” for nodes in domains (but not for nodes in classes).
This change affects the lexical syntax of node names in files (NET, data, case, and node list files) and in strings
containing expressions.

• Sensitivity analysis: It is now possible to compute sensitivity data for multiple output probabilities simultane-
ously. This allows for easy solution of constraints on the output probabilities.

• Limited memory influence diagrams (LIMIDs) replace influence diagrams as the tool for modeling decision problems. This has several implications:

– There is no “no-forgetting” assumption in a LIMID: All information links must be explicitly repre-
sented in the network.

– A total order of the decisions is no longer required.

– Evidence specified for a LIMID must satisfy the “free will” condition: A chance node can’t be ob-
served before all decisions in the ancestral set of the chance node have been made. Moreover, only
simple instantiations are now permitted as evidence for decision nodes.

– Computing optimal decisions is now a separate operation (that is, they are no longer computed as part
of inference).

– Decision nodes now have tables. These tables represent decision policies and can be specified in the
same way (including the use of models) as conditional probability and utility tables. However, they
are usually computed by the “h_domain_update_policies” operation.

– In LIMIDs, there are no constraints on elimination orders used for triangulation.

– The overall expected utility of the decision problem is provided by the new
“h_domain_get_expected_utility” function.

– “h_node_get_belief” and “h_node_get_expected_utility” now accept (discrete) chance as well as de-
cision nodes as arguments, and “h_node_get_expected_utility” also accepts utility nodes.

– The usage conditions and the treatment of information links has changed for d-separation analyses in
LIMIDs.

– The “nodes” argument of “h_domain_get_marginal” may now contain decision as well as chance
nodes. Also, decision nodes are no longer required to be instantiated and propagated.

– The “h_domain_simulate” operation no longer requires decision nodes to be instantiated and (for
compiled domains) propagated.

– The EM algorithm and the “h_domain_get_log_likelihood”, “h_domain_get_AIC”, and
“h_domain_get_BIC” functions no longer require decision nodes to be instantiated in all cases
of the data set. Instead, the evidence in a given case is only required to be “valid”.

– Sensitivity analysis: Sensitivity functions where the input parameter is associated with a decision node
can now be computed. Also, decision nodes are no longer required to be instantiated and propagated.

– The arguments of “h_node_get_entropy” and “h_node_get_mutual_information” may now be deci-
sion as well as chance nodes. Also, decision nodes are no longer required to be instantiated and
propagated.

474 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

– The “h_domain_save_to_memory” operation is disabled for LIMIDs.

– Calculation of conflict of evidence is not supported for LIMIDs.

– The NET format has been extended in order to represent policies.

– The HKB format has changed.

Back

5.12 Release 7.1 March 2009

Today - March 25th, 2009 - we have released a new version of the HUGIN software (v7.1).

The main new features of this release are:

• Parameter estimation from data for continuous nodes using the Expectation Maximization (EM) algorithm
(page 334). The HUGIN tool has been extended with functionality to perform parameter estimation for both
discrete and continuous nodes in a Bayesian network. The parameter estimation is performed using the EM
algorithm supporting missing values in data.

• Two-way parameter sensitivity analysis (page 322) has been included in the Parameter Sensitivity Wizard. The
Parameter Sensitivity Wizard has been extended with support to perform two-way parameter sensitivity analysis
on an output probability given a set of evidence. This allows the user to efficiently investigate the impact of
co-varying two parameters on a posterior probability.

5.12.1 HUGIN Graphical User Interface v7.1:

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• Learning Wizard: Functionality for saving and loading data preprocessing definitions, e.g., the specification of
a discretization operation or value replacements.

• Learning Wizard: Discretization using Information Entropy Minimization (U. M. Fayyad and K. B. Irani.
‘Multi-Interval discretization of continuous valued attributes’).

• Learning Wizard: Discretization of multiple numeric variables have been improved to become more user
friendly.

• Analysis Wizard (page 242): Functionality for exporting the results of a series of belief update operations across
a set of cases to a CSV file.

• Analysis Wizard: Functionality for generating a PDF report over the results of a series of belief update operations
across a set of cases.

• Parameter Sensitivity Wizard (page 270): Computing Sensitivity on multiple cases from a case file.

• In addition to parallelizing table operations when compiling and propagating in run-mode. Table operations
when learning and in various wizards may also be parallelized.

• Added option for specifying a background image for the network panel (page 167).

• Allowing the creation and parsing of invalid Expressions in the Expression Builder Wizard (page 256).

• Other minor improvements.

Finally, efforts have been put into improving the performance of the HUGIN Graphical User Interface.

© Copyright 2020, HUGIN EXPERT A/S 475

HUGIN Graphical User Interface Documentation, Release 8.9

5.12.2 HUGIN Decision Engine v7.1:

The HUGIN Decision Engine has been extended with the following features:

• The EM algorithm has been extended to learn CG distributions for continuous nodes.

• The EM algorithm now permits learning to be enabled/disabled for specific parent configurations: A nonnegative
experience count enables learning, while a negative experience count disables learning.

• The EM algorithm now checks that the equilibrium is ‘sum’ with no evidence incorporated. As a “sanity” check,
it also verifies that learning is enabled (that is, there must exist at least one node with a nonnegative experience
count), and that case data has been specified.

• Because the EM algorithm is controlled by experience tables, continuous nodes may now also be given experi-
ence tables.

• The HKB format has been updated (in order to support parameter learning for continuous nodes).

• The model scoring functions now check that the junction tree potentials are up-to-date with respect to the node
tables and their models (if any).

5.13 Release 7.2 November 2009

November 25, 2009

Today we are releasing a new version of the HUGIN software (v7.2). The main new features of this release are:

• A new Application Programming Interface (API) for PDAs. The HUGIN Decision Engine now has an API that
makes it possible to run applications using HUGIN functionality on a PDA.

• HUGIN software has been extended with a new Monte Carlo algorithm to find the most probable configurations
of a set of nodes in a network.

• Parameter estimation from data for object-oriented networks using the Expectation Maximization (EM) algo-
rithm is now supported by the HUGIN Graphical User Interface (GUI). The parameter estimation is performed
using the EM algorithm supporting missing values in data.

5.13.1 HUGIN Graphical User Interface v7.2

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• Functionality to identify non-requisite parents of a decision node (page 273) in a limited-memory incluence
diagrams has been included.

• Value of Information Dialog: now supports value of information analysis (page 294) on continuous nodes
through a simple approximation.

• Evidence Sensitivity Analysis Dialog (page 281): the what-if tab now supports evidence on continuous nodes.

• Analysis Wizard (page 242): the Accuracy pane is enabled for networks with both discrete and continuous nodes.

• A new triangulation method has been introduced. This triangulation method is now the default method used by
the tool.

• Improved support for automatic update when new builds are released.

• The status bar now displays the size of the policy for a selected decision node.

• The status bar now displays the size of the utility function associated with a selected utility node.

• Functionality to flip the network upside down has been included.

476 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• Other minor improvements.

Finally, efforts have been put into improving the performance of the HUGIN Graphical User Interface.

5.13.2 HUGIN Decision Engine v7.2

The HUGIN Decision Engine has been extended with the following features:

• An algorithm for finding the “requisite” parents of a decision node in a LIMID has been implemented.

• A Monte Carlo algorithm for finding the most probable configurations of a set of nodes has been implemented.

• A new triangulation method has been implemented: This method triangulates each prime component using all
of the elimination based triangulation heuristics and uses the best result.

• This triangulation method is now used by the compilation operation when compiling untriangulated domains.

• As the elimination based triangulation heuristics may produce non-minimal triangulations, an extra pass that
removes “redundant fill-in edges” has been added to these heuristics.

5.14 Release 7.3 March 2010

Today, March 29, 2010, we are releasing a new version of the HUGIN software (v7.3). The main new feature of this
release is the introduction of a new node type called the “function” node type.

A function node represents a numerical value computed from the results of a propagation in a network. A function
node allows the user to define mathematical expressions representing a value computed after a successful propagation
(or simulation) in a network. The function node can have continuous nodes, discrete chance nodes, and utility nodes
as parents. The expression is defined using the Table Generator.

The development of the functionality concerning the function node type (introduced in HUGIN 7.3) has been spon-
sored by Danish mortgage credit institution Nykredit Realkredit (www.nykredit.dk).

5.14.1 HUGIN Graphical User Interface v7.3

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• A dialog for determining the number of states of a hidden node has been introduced. The number of states is
determined by iterating over all state space sizes from a minimum to a maximum value set by the user. The user
can select from a number of different scoring methods. For each iteration a parameter estimation is performed
and the user has the option to set the number of states of the hidden node to the best scoring option.

• A dialog to perform feature selection has been introduced. The feature selection is performed relative to a target
node. For each node represented in data, a score of the correlation between the node and the selected target node
is computed. The result is a list of the nodes sorted according to the score.

• The Chow-Liu algorithm (page 237) has been included in the Learning Wizard. The Chow-Liu algorithm
allows the user to learn a tree structure over the discrete chance nodes represented in data. The resulting tree
is a maximum-likelihood estimate of the unknown distribution generating the data (under the tree structure
constraint).

• A tree-augmented naive Bayes model (TAN) (page 237) learning algorithm has been included in the Learning
Wizard. The TAN learning algorithm is based on the Chow-Liu algorithm. It learns a tree structure over the
attribute nodes of a TAN model given a target node.

© Copyright 2020, HUGIN EXPERT A/S 477

HUGIN Graphical User Interface Documentation, Release 8.9

• The support for Object-Oriented Networks (OONs) has been improved with new functionality for navigating
OONs in run-mode. This includes support for opening monitor and policy windows of nodes inside an instance
node and traversal of instance nodes.

• Vector Quality PDF export for network structure.

• The adaptation wizard now supports the inspection of probability distributions for nodes not subject to adapta-
tion.

• When loading a case from file the probability of the evidence in the case is reported to the status bar

• Other minor improvements.

Finally, efforts have been put into improving the performance of the HUGIN Graphical User Interface.

5.14.2 HUGIN Decision Engine v7.3

The HUGIN Decision Engine has been extended with the following features:

• A new node type has been introduced: The “function” node type. This node type is used to express calculations
to be performed using the results of inference or simulation as input. However, function nodes are not involved
in the inference process itself, so evidence cannot be specified for function nodes.

• Here is a list of changes related to the introduction of function nodes:

– The category of function nodes is “h_category_function”, and the kind is “h_kind_other” (this kind is
also used for utility and instance nodes).

– A real-valued function is associated with each function node. This function is specified using a model.

– The function associated with a function node must only depend on the parents of the node. The parents
can be of any type of node (except instance nodes).

– The value of a function node based on the results of inference is requested by the “h_node_get_value”
function.

– The value of a function node based on the results of simulation is requested by the
“h_node_get_sampled_value” function.

– The “h_domain_new_node”, “h_node_clone”, and “h_node_delete” functions do not uncompile if a
function node is involved.

– The “h_node_add_parent”, “h_node_remove_parent”, and “h_node_switch_parent” functions do not
uncompile if the child node is a function node.

– The HKB format has been updated to support networks with function nodes (but the old format is still
used for networks without function nodes).

– The NET language has been extended: The new “function” keyword denotes the definition of a func-
tion node, and “potential” specifications are now also used to specify links and models for function
nodes.

– The results of simulation are now invalidated by (implicit as well as explicit) uncompile operations.

– The new “h_node_get_sampled_utility” function requests the “sampled” utility of a utility node.

478 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

5.15 Release 7.4 October 2010

Today we are releasing a new version of the HUGIN software (v7.4). The main new feature of this release is func-
tionality in the HUGIN Graphical User Interface (GUI) to import the specification of a Bayesian network from a set
of primitive tables. In addition, the support for solving influence diagrams has been improved with new features.

The new functionality to import a Bayesian network from a set of primitive tables gives the user an alternative to using
the traditional HUGIN Network Specification language for specifying a Bayesian network model.

The development of the functionality concerning importing a Bayesian network from a set of primitive ta-
bles (introduced in HUGIN 7.4) has been sponsored by Danish mortgage credit institution NykreditRealkredit
(www.nykredit.dk).

5.15.1 HUGIN Graphical User Interface v7.4

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• The JointDialog is enabled for LIMIDs and supports decisions.

• The CorrelationDialog is enabled for LIMIDs and supports decisions.

• It is possible to initialize policies for decision nodes in Run-mode. This enables the user to initialize policies
without returning to Edit-mode, for instance, when performing Single Policy Updating under different evidence
scenarios.

• It is possible to display the requisite ancestors for decision nodes. This is, for instance, useful for solving a
network with decisions and utlity functions as a traditional influence diagram.

• Switching node class (e.g., switching the node class from decision to chance and vice versa).

• The Adaptation Wizard has been expanded with extra recording and logging features.

• Case counts enabled for data files in the Adaptation Wizard.

• The Sensitivity to Evidence Dialog can now be open from the cases/beliefs tab in the Analysis Wizard. This is
useful for explaining the results of belief update in the Analysis Wizard.

• A new option to specify additional optimal triangulation parameters has been introduced.

• Support for native printing using lpstat/lpr and PostScript on Unix-like systems (e.g., Linux, Solaris, Mac).

• The speed of resetting, normalizing and randomizing probability, experience and fading tables has been im-
proved.

• Internationalization of HUGIN Graphical User Interface (buttons and menus now include support for English,
French and Japanese languages)

• The HUGIN Graphical User Interface has been extended with a Code Wizard to generate C, C# and Java code for
runtime models. This enables the user to generate code constructing a model using the corresponding HUGIN
API.

• Other minor improvements.

Finally, efforts have been put into improving the performance of the HUGIN Graphical User Interface.

© Copyright 2020, HUGIN EXPERT A/S 479

HUGIN Graphical User Interface Documentation, Release 8.9

5.15.2 HUGIN Decision Engine v7.3

The HUGIN Decision Engine has been extended with the following features:

• HUGIN API libraries for the Windows platforms are now provided for Visual Studio 2010 (in addition to Visual
Studio 6.0, Visual Studio .NET 2003, Visual Studio 2005, and Visual Studio 2008).

• A function for identifying the “requisite ancestors” of a decision node is now provided. This is useful for
identifying the relevant past observations and decisions in traditional influence diagrams (i.e., influence diagrams
obeying the “no-forgetting” rule).

• It is now possible to convert a decision node to a chance node (or vice versa) – while preserving all other
attributes of the node unchanged.

• The compression feature is now supported for LIMIDs.

• The data type used for table indexes within the data structures of compressed domains is now a 32-bit integer
type (this used to be a 16-bit type). This change allows the construction of much larger compressed tables (at
the cost of a higher memory consumption).

• Because of this, HKB files containing compressed domains use a new revision of the file format (but other HKB
files use the same revision as HUGIN API version 7.3).

5.16 Release 7.5 June 2011

Today we are releasing a new version of the HUGIN software (v7.5). The main new features of this release are new
algorithms for learning the structure of a Bayesian network from a database of cases in the HUGIN Graphical User
Interface (GUI) and a new HUGIN Web Service Application Programming Interface (API) to the HUGIN Decision
Engine.

5.16.1 HUGIN Graphical User Interface v7.5

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• The Learning Wizard now includes two new algorithms for learning the structure of a Bayesian network from
a database of cases: a greedy search-and-score method and the Pearl & Rebane algorithm. The greedy search-
and-score method constructs a Bayesian network by a greedy search through the space of possible network
structures. It is possible to use either the BIC or AIC score to score candidate structures and to specify an upper
limit on the number of parents of each node in the graph. The Pearl & Rebane algorithm constructs a poly-tree
structure from the database of cases.

• The Learning Wizard has a new option to add no-links constraints to a selected set of nodes.

• The Analysis Wizard now supports the use of function nodes. This allows the user to process a large number of
cases and evaluate the value of function nodes in each case.

• In the Sensitivity Set Graph of the Parameter Sensitivity Wizard it is now possible to open a table to see the
sensitivity values associated with each node. In the Parameter Sensitivity Wizard there is also a new option for
saving the sensitivity network panel as PDF.

• The Evidence Sensitivity Dialog has improved support for performing “what-if” analysis.

• The user now has the option to define her own language file.

• The Import Information function now enables the user to import state labels and values from a network specifi-
cation file.

480 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• When a node of a Class is selected in Run-mode, the status bar shows the entropy for discrete chance nodes, the
entropy, mean and variance of discrete numeric chance nodes and the mean and variance of continuous chance
nodes.

• The simulation of function nodes has been added to the Generate Simulated Cases dialog.

Finally, efforts have been put into improving the performance of the HUGIN Graphical User Interface.

5.16.2 HUGIN Decision Engine v7.5

The HUGIN Decision Engine has been extended with the following features:

• The performance of table operations involving discrete nodes only has been improved. This has led to improved
performance of inference on many networks.

• Function and utility nodes can now be used as inputs and outputs of classes in OOBNs.

• A new HUGIN Web Service API is introduced including a set of pre-defined widgets to support easy de-
ployment of HUGIN models using JavaScript. Examples can be found at: http://www.hugin.com/solutions/
fraud-detection-management/online-demonstration and http://camvac.hugin.dk

5.17 Release 7.6 February 2012

Today we are releasing a new version of the HUGIN software (v7.6). The main new features of this release are support
for learning the structure of a Bayesian network with both continuous and discrete variables from a database of cases,
new functionality in the HUGIN Graphical User Interface (GUI) for reading data and preprocessing data, and a new
input panel of the HUGIN GUI.

5.17.1 HUGIN Graphical User Interface v7.6

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• The constraint-based structure learning algorithms, i.e., the PC and NPC algorithms for learning structure, have
been extended to support learning the structure of Bayesian networks with both continuous (CG) and discrete
variables under the assumption that continuous nodes are conditional linear Gaussian and discrete nodes cannot
have continuous parents.

• The functionality of the HUGIN GUI for reading and representing data has been improved significantly. The ma-
jor changes include the use of a new flexible internal data structure for representing data as well as a completely
reengineered data preprocessor for manipulating raw data.

• A new Input Panel has been added to HUGIN GUI Run-Time mode. The Input Panel includes a list of predefined
nodes that the user can enter evidence on and the possibility to change the value of function nodes. This, for
instance, makes it easy to enter evidence on a set of nodes as well as to change constants of expressions for
tables defined as function nodes.

• The new input panel supports the computation of the p-percentile for interval nodes.

• The Value of Information Dialog now supports the calculation of mutual information between all subsets of
nodes.

• The Learning Wizard now reports the table size of a selected node. This is helpful for determining if the data
set is sufficient to justify the complexity of a network.

• Function and utility nodes can be specified as interface nodes.

© Copyright 2020, HUGIN EXPERT A/S 481

http://www.hugin.com/solutions/fraud-detection-management/online-demonstration
http://www.hugin.com/solutions/fraud-detection-management/online-demonstration
http://camvac.hugin.dk

HUGIN Graphical User Interface Documentation, Release 8.9

• Function nodes can now be specified as parents of non-function nodes. This can be used to provide input to the
table generation facility.

Finally, efforts have been put into improving the performance of the HUGIN Graphical User Interface.

5.17.2 HUGIN Decision Engine v7.6

The HUGIN Decision Engine has been extended with the following features:

• The structure learning algorithm now supports learning of networks with continuous (CG) nodes.

• Function nodes can now be specified as parents of non-function nodes. This can be used to provide input to the
table generation facility.

5.18 Release 7.7 December 2012

Today we are releasing a new version of the HUGIN software (v7.7). The main new features of this release are the
introduction of a new node type called the discrete “function” node type and the new associated operation “aggregate”.

A discrete function node is similar to a function node. Whereas a function node represents a numerical value computed
from the results of a propagation in a network, a discrete function node represents a set of numerical values. That is,
a discrete function node has a subtype, e.g., interval or labelled, and a set of states. A discrete function node allows
the user to define mathematical expressions representing a distribution computed after a successful propagation in
a network. The new operator “aggregate” can be used to aggregate two distributions (representing frequency and
severity) into a single distribution. The expression is defined using the Table Generator.

It is possible to use function nodes and, for instance, the “probability” operator to connect (otherwise disconnected)
sub-graphs of chance nodes. This means that a probability computed in one network can be transferred to another
network.

The development of the functionality concerning the discrete function node type as well as the aggregate and
probability-transfer operators (introduced in HUGIN 7.7) has been sponsored by the research project “Operational
risk in banking and finance”. The project is dedicated to strengthening management of operational risk in the banking
and finance sector, including develop Basel II compliant operational risk measurement and management tools in ac-
cordance with the Advanced Measurement Approach (AMA). The project is financed by the University of Stavanger
and a consortium of Norwegian banks consisting of Sparebank 1 SR-Bank, Sparebank 1 SNN, Sparebank 1 SMN,
Sparebanken Hedmark and Sparebank 1 Oslo and Akershus.

5.18.1 HUGIN Graphical User Interface v7.7

The HUGIN Graphical User Interface has been improved with various new features. This includes:

• The discrete function node type as well as the “aggregate” and “probability” operators are supported by the
HUGIN GUI.

• The data preprocessor for manipulating raw data in the Learning and EM Learning Wizards has been improved
with new features. This includes the possibility to delete columns and entropy-based discretization for super-
vised discretization.

• The HUGIN GUI now supports simulation in a LIMID under the current strategy.

• It is now possible to define attributes on Domain objects in the HUGIN GUI.

• A Utility Sensitivity Analysis Dialog has been added to the HUGIN GUI. This allows the user to perform
sensitivity analysis on the utility parameters of a LIMID. The sensitivity analysis is solving the LIMID for a set
of user defined parameter values.

482 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• The Code Wizard has been extended and improved with new functionality. This has improved the performance
of the Code Wizard.

• The performance of the “propagate ALL rows” in the DataSet Dialog has been improved significantly.

• The d-separation code in the HUGIN GUI has been replaced to improve performance.

• The mean and variance calculations for numeric nodes has been improved.

• It is possible to inspect the Table Generator expression for a node in Run-Mode using CTRL+right-click.

• The Node States Generator has been extended to support copying states between nodes of different category and
identical sub-types (e.g., to copy states between a labelled discrete chance node and a labelled discrete decision
node).

• Other minor improvements

Finally, efforts have been put into improving the performance of the HUGIN Graphical User Interface.

5.18.2 HUGIN Decision Engine v7.7

The HUGIN Decision Engine has been extended with the following features:

• A new node type has been introduced: The “discrete function” node type. This node type is a combination of
the “discrete” and “function” node types. The function nodes implemented in previous versions of the HUGIN
API are now referred to as “real-valued function” nodes.

• A new operator to express “aggregate distributions” has been introduced. An aggregate distribution is the
distribution of the sum of a random number of independent identically distributed random variables. This
operator can only be used in models for discrete function nodes.

• A new operator to express a probability computed from the beliefs of a discrete node has been introduced. This
operator can only be used in models for function nodes.

• More general network topologies can now be specified. It is now possible to have a directed path containing
“functional links” between two nodes that are not real-valued function nodes. This feature is essential in order
to use the new expression operators.

• Two new parameters have been introduced for the total-weight triangulation method. These parameters can be used to produce better triangulations as well as speed up the triangulation process.

– An “initial triangulation” can be specified: If a good triangulation is already known, then this can be
used to speed up the search for a better triangulation.

– The search for minimal separators can be speeded up by discarding separators larger than a prespeci-
fied size. This also makes it possible to handle larger prime components (without having to split them
into smaller graphs).

• The NET language has been extended in order to support discrete function nodes and the new expression oper-
ators.

• HUGIN API libraries for the Windows platforms are now provided for Visual Studio 2012 (in addition to Visual
Studio 6.0, Visual Studio .NET 2003, Visual Studio 2005, Visual Studio 2008, and Visual Studio 2010).

• The HUGIN Web Service API has been extended with new widget types for creating belief bars, doing vector
graphic plotting and table editing.

© Copyright 2020, HUGIN EXPERT A/S 483

HUGIN Graphical User Interface Documentation, Release 8.9

5.19 Release 7.8 May 2013

Today we are releasing a new version of the HUGIN software (v7.8). The main new feature of this release is the
introduction of “explanation” facilities in the HUGIN Decision Engine.

The new “explanation” facilities of the HUGIN Decision Engine makes it more efficient and straightforward for the
application developer to include explanation features in her own implementations. Explanation is defined as the task
of identifying the impact of subsets of the evidence on the probability of an hypothesis.

5.19.1 HUGIN Graphical User Interface v7.8

The HUGIN Graphical User Interface has been improved with various new features. These include:

• The explanation functionality of the Evidence Sensitivity Dialog is now based on API functionality of the
HUGIN Decision Engine.

• A Show Decision Utilities Dialog has been added to the HUGIN GUI. This allows the user to compute and see
a table of the utilities for a specific decision from which the policy is identified using Single Policy Updating.
This functionality can be used to inspect the table of utilities producing a policy for a decision.

• The Table View has been extended with a CG Table Wizard for Continuous Gaussian (CG) nodes. The CG
Table Wizard allows the user to define mathematical expressions for the calculation of the mean and variance of
a CG node. This functionality is only available in the HUGIN GUI.

• The policy table of a decision node can be copied and pasted to another decision node.

• The Value of Information Dialog now supports the calculation of a normalized mutual information measure
between all subsets of nodes.

• The Input Panel of the HUGIN GUI Run-Time mode has been extended with functionality to collapse parts of
the panel. This is useful when the panel includes a lot of information, for instance, a high number of levels in
an object-oriented network.

• The Data Frame window has been extended with functionality to compute the ROC and confusion matrix for
classification models. The ROC and confusion matrix are useful measures for determining the performance of a
classifier.

• Two new parameters have been introduced for the total-weight triangulation method. These parameters can be
used to produce better triangulations as well as speed up the triangulation process.

• An “initial triangulation” can be specified: If a good triangulation is already known, then this can be used to
speed up the search for a better triangulation.

• The search for minimal separators can be sped up by discarding separators larger than a prespecified size. This
also makes it possible to handle larger prime components (without having to split them into smaller graphs).

• Functionality to reorder the states of a labelled discrete node has been included. This function also updates
tables according to the new order of states.

• Other minor improvements.

Finally, efforts have been made into improving the performance of the HUGIN Graphical User Interface.

484 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

5.19.2 HUGIN Decision Engine v7.8

The HUGIN Decision Engine has been extended with the following features:

• A set of functions implementing explanation features. This enables the user to identify the impact of subsets of
the evidence on the probability of a hypothesis using a single HUGIN function as well as functions to access the
scores and subsets.

• A function to reorder the states of a decision node has been included. This function also updates tables according
to the new order of states

5.20 Release 8.0

March 2014

The main new feature of this release is the introduction of Dynamic time-sliced Bayesian Networks.

Functionality to support reasoning about dynamic time-sliced systems using Bayesian networks is introduced as part
of version 8.0. This introduces the notions of Dynamic time-sliced Bayesian Networks (DBNs) with a sliding time-
window as well as operations on this time-window including belief update in the time window, forecasting beyond
the time window and moving the time window forward. DBNs make it possible for the user to represent a dynamic
time-sliced system as a model in HUGIN software. A DBN is specified using a new type of node referred to as a
temporal clone. A temporal clone of a node is a representation of the corresponding node at the previous time step.
Using temporal clones it is possible to specify a transition probability distribution from one time step to the next time
step reflecting the dynamics of the (time-sliced) system represented in the model.

5.20.1 HUGIN Graphical User Interface v8.0

The HUGIN Graphical User Interface has been improved with various new features. These include:

• Dynamic Bayesian Networks (DBNs) including a number of supporting operations

• Link groups have been introduced. Link groups are similar to node groups. The user can define a set of link
groups where each group has a specific color. This makes it possible for the user to color code links in a network

• A Network Statistics Dialog has been introduction. It shows the number of nodes, edges, parameters et cetera
in a network

• It is now possible to define expressions to generate the mean and variance values of CG nodes.

• Other minor improvements.

Finally, efforts have been made into improving the performance of the HUGIN Graphical User Interface.

5.20.2 HUGIN Decision Engine v8.0

The HUGIN Decision Engine has been extended with the following features:

• Dynamic Bayesian Networks (DBNs) including a number of supporting operations. DBNs are available through
all Application Programming Interfaces (APIs) except the Web Service API.

• Nodes of type Interval can now have intervals where the lower and upper values are the same (zero width
intervals or point intervals). This is useful in cases where it is important to define a point value of an Interval
node.

• Support for Visual Studio 2013

© Copyright 2020, HUGIN EXPERT A/S 485

HUGIN Graphical User Interface Documentation, Release 8.9

• Web Service API refactoring. Internal parts of the Web Service API have been refactored to improve perfor-
mance of this API.

• Optimization features introduced in JavaScript for HUGIN web service API include

– A script engine is now available inside the HUGIN web service host process,

– Remote procedure calls to the host process embedded script engine, and

– Support for batching function calls with side effects into a single HTTP request.

5.21 Release 8.1

October 2014

The main new feature of this release is the introduction of the new HUGIN COM API and extensions to the support
for Dynamic time-sliced Bayesian Networks.

The functionality to support reasoning about dynamic time-sliced systems using Bayesian networks introduced as part
of version 8.0 has been extended. This includes the support for dynamic Bayesian networks in the HUGIN Webservice
API and the option to include continuous chance nodes and function nodes in the networks (these nodes cannot have
temporal clones though). Based on multiple customer requests, we are introducing the HUGIN COM API that, for
instance, makes it possible to use HUGIN in a 64-bit version of Microsoft Excel.

5.21.1 HUGIN Graphical User Interface v8.1

The HUGIN Graphical User Interface has been improved with various new features. These include:

• The DBN functionality has been extended. Now continuous chance nodes as well as discrete and continuous
function nodes are now supported in DBN models with the restriction that they cannot have temporal clones.

• The DBN functionality has been extended. Now continuous chance nodes as well as discrete and continuous
function nodes are now supported in DBN models with the restriction that they cannot have temporal clones.

• Functionality for Prediction and Bayesian filtering with DBNs has been included in the Data Frame.

• The Preprocessing tool used in, for instance, the Learning Wizard, has been improved and changed name to Data
Processing. Among the many new features is functionality that enables evaluation of prediction and Bayesian
filters.

• The Data Frame window has been extended with functionality to include the normalization constant computed
during belief update, the logarithm of the normalization constant, and the probability of the evidence when
propagating cases.

• It is possible to report beliefs to the Data Frame window.

• Default link groups have been introduced to make it easy to set the color of, for instance, information links in
influence diagrams.

• The Code Wizard has been extended to support both DBNs and object-oriented Bayesian networks and influence
diagrams.

• Function nodes and utility nodes can now be defined as interface nodes in object-oriented Bayesian networks
and influence diagrams.

• Under certain circumstances, the shortcuts could be lost. This has been fixed.

• Other minor improvements.

Finally, work has been done to improve the performance of the HUGIN Graphical User Interface.

486 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

5.21.2 HUGIN Decision Engine v8.1

The HUGIN Decision Engine has been extended with the following features:

• HUGIN Webservice API extended with support for object-oriented Bayesian networks and influence diagrams
as well as DBNs

• A new COM interface version of the HUGIN API - HUGIN COM is introduced. It replaces the now deprecated
ActiveX server and enables both 32- and 64-bit applications to consume the HUGIN COM interface (i.e. HUGIN
is now available to 64-bit Excel).

• Responsiveness of web applications built using JavaScript for HUGIN web service API is speeded up by au-
tomatic re-fetching the set of HTTP cache items invalidated whenever a HUGIN function with side-effects is
invoked.

• The HUGIN Decision Engine now support saving object-oriented Bayesian networks and influence diagrams as
well as DBNs in a HKB file.

5.22 Release 8.2

May 2015

The main new feature of this release is functionality for learning the structure of a Bayesian network from data in
parallel using the PC algorithm. The parallel implementation is based on the use of threads and requires all data in
main memory.

This release also includes a number of improvements made to the Data Frame window for data processing and model
performance evaluation.

5.22.1 HUGIN Graphical User Interface v8.2

The HUGIN Graphical User Interface has been improved with various new features. These include:

• The Data Frame window has been improved with a number of new features to support model evaluation. In
particular, the Data Frame window has been extended with functionality to calculate the confusion matrix for
classification models where the class variable has more than two states, leave-one-out cross validation, the option
to specify the value of a real-valued function node in the data set as well as functionality to show multiple curves
in the same plot and to plot values against the case index.

• The PC algorithm has been extended with functionality to learn the structure of a Bayesian network from data
in parallel using threads. This means the time to learn the structure of a Bayesian network from data can be
reduced by taking advantage of multiple cores on the computer.

• The DBN functionality has been extended with a rewind button making it easy to reset a DBN without perform-
ing a new compilation of the model.

• The Node Properties dialog has been improved.

• Selected edges are now highlighted in Edit-mode.

• New functionality to illustrate the strengths of dependence relations in a Bayesian network has been included.
This is based on computing the pairwise mutual information between connected nodes in the graph.

• Other minor improvements.

Finally, work has been done to improve the performance of the HUGIN Graphical User Interface.

© Copyright 2020, HUGIN EXPERT A/S 487

HUGIN Graphical User Interface Documentation, Release 8.9

5.22.2 HUGIN Decision Engine v8.2

The HUGIN Decision Engine has been extended with the following features:

• The Table Generator has a new operator to specify the state index of a parent node in an expression. This is
particularly useful when a node has parent nodes of subtype Interval.

• The HUGIN Web Service API now supports the use of JSON objects for more efficient communication between
a client and the server. This significantly reduces the communication overhead when the server has to perform
a large number of HUGIN function calls.

• The HUGIN Decision Engine supports parallel PC structure learning using threads.

5.23 Release 8.3

February 2016

The main new feature of this release is improved support for Dynamic Bayesian networks. This includes an algorithm
for approximate belief update in a Dynamic Bayesian network through approximation of the joint probability distri-
bution over the temporal clones and a number of extensions to the Data Frame window for data processing and model
evaluation involving data sequences.

5.23.1 HUGIN Graphical User Interface v8.3

The HUGIN Graphical User Interface has been improved with various new features. These include:

• Inference in a Dynamic Bayesian network can now be performed using an approximate algorithm. The approx-
imation is supported for prediction and when moving the time-window. Belief update inside the time window
is exact. This means that the approximation is mainly relevant for 1.5 time-step Dynamic Bayesian networks
with a large joint probability distribution over the temporal clones. It is possible to select between exact and
approximate inference.

• The Data Frame window has been improved with a number of new features to support evaluation of (mainly)
Dynamic Bayesian networks on data sequences. This includes functionality to mark a column as sequence
identifier when a data file contains more than one sequence. Functionality for propagating cases, manipulating
data, and evaluating dynamic models are sensitive to the specification of a sequence identifier. There is, for
instance, functionality to transform data sequences into single cases and to inspect the results of sequence
classification in more detail.

• It is now possible to change the value of a real-valued function node without parents in Run-mode.

• It is now possible to run the OOBN EM parameter estimation on a Dynamic Bayesian Network. This is useful
in combination with the improved support for handling data sequences in the Data Frame window.

• A Structure Learning Wizard has been added to the list of Wizards. This makes it more easy to construct the
structure of a Bayesian network without going through the parameter estimation step of the Learning Wizard.

• The Learning Wizard and the Structure Learning Wizard have an optional step for feature selection. This step
supports feature selection on discrete variables relative to a specific target variable and is useful when building
classification models from data.

• The DBN functionality has been extended with a fast forward button making it easy to advance a DBN a specified
number of steps.

• The DBN functionality has been extended with a menu item to open or close all monitors for a node across
time-slices.

• It is now possible to expand / collapse recursively a single instance node in Run-Mode.

488 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• The functionality for exporting beliefs to a Data Frame dialog now shows the mean and variance for CG nodes.

• The same Java code is now used to generate both the 32-bit and the 64-bit versions of the HUGIN Graphical
User Interface.

• Toggle Data Frame Window from a frame inside the HUGIN GUI Frame to a freely floating window.

• Other minor improvements.

Finally, work has been done to improve the performance of the HUGIN Graphical User Interface.

5.23.2 HUGIN Decision Engine v8.3

The HUGIN Decision Engine has been extended with the following features:

• The Application Programming Interfaces (APIs) for the HUGIN Decision Engine has been extended with a new
data type for representing a data set. This includes supporting functionality to manipulate and use the data set.
This is useful for reading, storing and manipulating data that does not necessarily match the requirements of
existing API functions for, for instance, parsing data from a file.

• The HUGIN Decision Engine supports approximate inference in Dynamic Bayesian Networks. The approxi-
mation is supported for prediction and when moving the time-window. Belief update inside the time window is
exact.

• The HUGIN Web Service API has new widgets for the deployment of Dynamic Bayesian Networks.

5.24 Release 8.4

October 2016

The main new feature of this release is improved support for approximate inference in Dynamic Bayesian networks.
Approximate inference using the Boyen-Koller approach can now be done between time slices within the time window
of the Dynamic Bayesian network. Previously, approximate inference was only supported when advancing the time
window and when making predictions beyond the time window. Furthermore, additional functionality to support the
evaluation of Dynamic Bayesian networks using data sequence has been added to the Date Frame window.

5.24.1 HUGIN Graphical User Interface v8.4

The HUGIN Graphical User Interface has been improved with various new features. These include:

• Support for Boyen-Koller approximation within the time window of a Dynamic Bayesian Network

• The Data Frame window has been improved with a number of new features to support evaluation of (mainly)
Dynamic Bayesian networks on data sequences. It is, for instance, now possible to manually specify “State to
Column mappings” and it has been made easier to identify columns containing class probabilities.

• The Data Frame window function ‘propagate-all’ shows a summary window after completion making it easier
to identify errors during propagation.

• The list of windows now contains information on Data Frames making it easier to select Data Frame windows.

• It is possible to collapse/expand individual instance nodes in the node list of an OOBN model.

• The “Networks Statistics” dialog has been extended with new information on parents and states.

• Descriptive text labels can now be added to a network using the new text label tool.

• Other minor improvements.

© Copyright 2020, HUGIN EXPERT A/S 489

HUGIN Graphical User Interface Documentation, Release 8.9

Finally, work has been done to improve the performance of the HUGIN Graphical User Interface.

5.24.2 HUGIN Decision Engine v8.4

The HUGIN Decision Engine has been extended with the following features:

• The HUGIN Decision Engine now supports Boyen-Koller approximation within the time window of a Dynamic
Bayesian Network.

• Support for Visual Studio 2015.

• Using the HUGIN Web Service API, the programmer can now specify a filename suggestion to the browsers
‘save as’ dialog when serving a HKB file.

5.25 Release 8.5

May 17, 2017

The main new features of this release are support for adaptation of class parameters in Object-Oriented Bayesian
Networks including Dynamic Bayesian Networks as a special case. HUGIN now supports parameter adaptation in
network classes using either fractional update or Online Expectation-Maximization (EM). Previously, the parameter
adaptation in case of Object-Oriented Bayesian Networks was performed in the tables of the run-time instance. Now
the adaptation is performed in the network class tables. Furthermore, a new HUGIN Decision Engine Application
Programming Interface for the Python programming language is introduced in this release.

5.25.1 HUGIN Graphical User Interface v8.5

The HUGIN Graphical User Interface has been improved with various new features. These include:

• Parameter adaptation in network classes using either fractional update or Online Expectation-Maximization
(EM) including supporting functionality in the Data Frame window.

• In the Learning Wizard and the Structure Learning Wizard, it is now possible to specify an initial structure of
the graph prior to running the greedy search-and-score structure learning algorithm.

• A new Distance Analysis dialog is introduced. This is a tool to compute the distance between the (conditional)
probability tables defined in two different models over the same set of nodes. The tool supports Hellinger
distance and weighted Hellinger distance as measures of the distance between the probability distributions of
two models.

• The feature selection functionality of the Learning Wizard and the Structure Learning Wizard has been im-
proved.

• It is now possible to copy state labels from a numeric node to all numeric nodes without a state label.

• Other minor improvements.

Finally, work has been done to improve the performance of the HUGIN Graphical User Interface.

490 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

5.25.2 HUGIN Decision Engine v8.5

The HUGIN Decision Engine has been extended with the following features:

• The HUGIN Decision Engine now supports two new methods for parameter adaptation in Object-Oriented
Bayesian Networks including Dynamic Bayesian Networks as a special case.

• A new HUGIN Decision Engine Application Programming Interface for the Python programming language.

• Support for Visual Studio 2017

5.26 Release 8.6

March 21, 2018

The main new features of this release are HUGIN Decision Engine Application Programming Interfaces for Android
and iOS platforms.

5.26.1 HUGIN Graphical User Interface v8.6

The HUGIN Graphical User Interface has been improved with various new features. These include:

• The HUGIN Graphical User Interface now has a Derby SQL database interface for loading data cases into a
Data Frame.

• Other minor improvements.

• Finally, work has been done to improve the performance of the HUGIN Graphical User Interface.

5.26.2 HUGIN Decision Engine v8.6

The HUGIN Decision Engine has been extended with the following features:

• A new HUGIN Decision Engine Application Programming Interface for the Swift programming language in-
cluding support for the Apple iOS platform.

• A new HUGIN Decision Engine Application Programming Interface for the Android platform.

• Support for creation of temporal clones of Continuous Gaussian (CG) nodes in Dynamic Bayesian Networks
(DBNs). This can, for instance, be used to create a Kalman Filter model as well as other models with a mixture
of discrete and continuous nodes. Both exact inference and partial Boyen-Koller approximation are available
for models with temporal clones of CG nodes.

5.26.3 Tools introduced with HUGIN v8.6

This release introduces a new tool to integrate Bayesian Belief Networks (BBNs) and geographic information system
(GIS).

© Copyright 2020, HUGIN EXPERT A/S 491

HUGIN Graphical User Interface Documentation, Release 8.9

5.26.4 HUGIN QGIS BBN Plugin

The QGIS Processing script makes it possible to apply a Bayesian network to each point in one or more raster layers
and output a new raster layer with the results. For each point potentially covering multiple layers, the Bayesian network
inserts and propagates the values of the nodes linked to raster layers. The user can select a number of output values:
index of state with maximum probability, probability of state with maximum probability, and maximum expected
utility.

5.27 Release 8.7

December 6, 2018

The main new features of this release are support for temporal clones of continuous variables in dynamic Bayesian
networks and a Decision Sensitivity to Evidence dialog. Furthermore, a number of new features of the HUGIN
Decision Engine are introduced in this release.

5.27.1 HUGIN Graphical User Interface v8.7

The HUGIN Graphical User Interface has been improved with various new features. These include:

• It is now possible to create a temporal clone of a continuous chance node in dynamic Bayesian networks (DBNs).
This means that a DBN may include both discrete and continuous chance nodes as well as have temporal clones
of each category of node. In the case of mixed discrete and continuous temporal clones, there are restrictions on
the compilation of the model.

• The HUGIN Graphical User Interface has been extended with a Decision Sensitivity to Evidence dialog. This
dialog enables the user to investigate the impact of changing the value of an observed chance node on the maxi-
mum expected utility of a decision node. This is useful for identifying the most and least important observations
made prior to making a decision.

• It is now possible in the Preference Pane of the HUGIN Graphical User Interface to deselect the use of fixed
font size. This is useful when running HUGIN Graphical User Interface on a high resolution small screen.

• The support for using the mouse wheel to zoom has been improved.

• In the Conflict Analysis dialog it is now possible to specify a maximum subset size on the evidence when
performing partial conflict analysis to reduce the computational cost.

• In the Conflict Analysis dialog it is now possible to investigate the contribution of each individual finding to a
conflict.

Finally, work has been done to improve the performance of the HUGIN Graphical User Interface.

5.27.2 HUGIN Decision Engine v8.7

The HUGIN Decision Engine has been extended with the following features:

• The HUGIN Decision Engine now supports three new methods for learning the structure of restricted Bayesian
networks from data. The algorithms make it possible to learn the structure of a Rebane-Pearl polytree, a Tree-
Augmented Naive Bayes Model and a Chow-Liu tree from data.

• The HUGIN Decision Engine Application Programming Interface for the Python programming language has
been updated to use double precision for floating-point computations.

• The run-time performance of the algorithm for optimal triangulation has been improved.

492 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

5.28 Release 8.8

September 16, 2019

The main new features of this release are a new Application Programming Interface for the .NET core programming
language and a number of interesting features in the HUGIN Graphical User Interface.

5.28.1 HUGIN Graphical User Interface v8.8

The HUGIN Graphical User Interface has been improved with various new features. These include:

• The implementation of the batch propagation functionality of the Data Frame has been refactored. This includes
the addition of a set of new measures that can be computed after the propagation of a case, e.g., mean, median
and quantile of a numeric node as well as state index of a state with maximum probability. This is useful for
processing, for instance, GIS data in HUGIN Graphical User Interface.

• Support for generating vector based graphics of models.

• New and improved HTML help facilities.

• Other minor improvements.

Finally, work has been done to improve the performance of the HUGIN Graphical User Interface.

5.28.2 HUGIN Decision Engine v8.8

The HUGIN Decision Engine has been extended with the following features:

• A new HUGIN Decision Engine Application Programming Interface for the .Net core programming language.

• The HUGIN Decision Engine now supports computing the variance of utility nodes.

• Support for Visual Studio 2019.

5.29 Release 8.9

June 2, 2020

The main improvement of the HUGIN software in version 8.9 is the migration of the HUGIN Graphical User Interface
to OpenJDK and associated updates.

5.29.1 HUGIN Graphical User Interface v8.9

The HUGIN Graphical User Interface has been improved with various new features. These include:

• Migration to OpenJDK including new installers

• Improvements to the Data Frame functionality

• Support for data conflict analysis – monitor individual contributions to the conflict for discrete nodes through
the log-likelihood ratio

• The sorting functionality is improved to sort numerically

• It is possible to include “evidence” on function nodes when processing cases

• Function to reset the contents of the table for a CG node

© Copyright 2020, HUGIN EXPERT A/S 493

HUGIN Graphical User Interface Documentation, Release 8.9

• Monitor window of a utility node includes variance (optional)

• Monitor window of a numeric decision node includes mean and variance (optional)

• Use of new library to generate vector based graphics of models

• Other minor improvements.

Finally, work has been done to improve the performance of the HUGIN Graphical User Interface.

5.29.2 HUGIN Decision Engine v8.9

The HUGIN Decision Engine has been extended with the following features:

• NET specifications in the form of text strings can now be generated for domains, classes, and class collections.
These strings are suitable for, e.g., transmission over a network, and they can be parsed by the usual functions
for parsing NET specifications.

• The documentation for the HUGIN Swift API is now available as a set of HTML pages.

494 © Copyright 2020, HUGIN EXPERT A/S

CHAPTER

SIX

EXAMPLES

In this section we present some examples of Bayesian networks and (limited memory) influence diagrams.

In the HUGIN Examples (page 495) section we present three examples of networks built in HUGIN. These examples
are meant to give you an idea of how to construct your Bayesian networks and influence diagrams using the HUGIN
Graphical User Interface.

In the Modeling Examples (page 503) section we present some problems that can be modeled using Bayesian networks
or influence diagrams. These are meant to show the connection between a textual description and a network model.

Implementations of these and many other examples come with the installation of any version of HUGIN. If you have
lost them or have an older installation of HUGIN, you have the opportunity to download them14

6.1 HUGIN Examples

In this section, we present a series of examples meant to give you ideas on how to construct your Bayesian networks
and influence diagrams.

In the stud farm example (page 497), a Bayesian network is used to compute the probabilities of the horses in a stud
farm being carriers of a recessive gene causing a life threatening desease.

In the oil wildcatter example (page 495), an influence diagram is constructed as an aid for an oil wildcatter to decide
whether to drill for oil at a location where he has the opportunity to get information from seismic soundings. This
example covers the problem of having more than one decision node in an influence diagram.

The Monty Hall example (page 501) demonstrates the use of a small Bayesian network to solve the Monty Hall Puzzle.

Implementations of these and other examples come with the installation of any version of HUGIN. If you have lost
them or have an older installation of HUGIN, you have the opportunity to download them15.

6.1.1 The Oil Wildcatter

In this example, an oil wildcatter must decide either to drill or not to drill. He is uncertain whether the hole is dry, wet
or soaking in oil. The wildcatter can make seismic soundings that will help determine the geological structure of the
site. The soundings will give a closed reflection pattern (indication for much oil), an open pattern (indication for some
oil) or a diffuse pattern (almost no hope for oil).

The wildcatter has two decisions to make, namely whether to test with seismic soundings costing K$10 and whether
to drill costing K$70. The utility gained from drilling is determined by the state of the hole (dry, wet or soaking).

The domain of this problem is modeled by the (limited-memory) influence diagram (LIMID) in Figure 1. Note the
link from Seismic to Drill. It specifies that when the decision of Drill has to be made, the state of Seismic is known.

14 http://download.hugin.com/samples
15 http://download.hugin.com/samples

© Copyright 2020, HUGIN EXPERT A/S 495

http://download.hugin.com/samples
http://download.hugin.com/samples

HUGIN Graphical User Interface Documentation, Release 8.9

If this link is not specified, the computations will be made under the assumption that this observation is not known by
the decision maker when she has to make the drill decision.

Figure 1: A LIMID modeling the oil wildcatters decision problem.

In Figure 1, the chance node Oil has states “dry”, “wet”, and “soak”, the chance node Seismic has states “closed”,
“open”, and “diff”, the decision node Test has actions “test” and “not”, and the decision node Drill has actions “drill”
and “not”. In Tables 1 and 2, the CPTs of the nodes Oil and Seismic are shown. In Table 3 and 4, the utility tables of
the utility nodes Pay and Cost are shown.

Table 1: P(Oil).

Table 2: P(Seismic | Oil, Test).

Table 3: Utility function Pay.

Table 4: Utility function Test.

The influence diagram is now constructed using the HUGIN GUI and after compilation and running Single Policy
Update, the results can be seen in the initial state of Figure 2 where the policies for the two decisions are shown along
with the monitor windows for all nodes.

496 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: The results of solving the LIMID using Single Policy Update.

Reading the network, we see that the expected utility of testing is k$22.5 while the no testing option as zero probability
as it is not the optimal choice and therefore zero expected utility. This implies that it will be best for the wildcatter
to test with seismic soundings which will give him the states of Seismic. In the monitor windows you can read the
expected utility and probability of different states under the optimal strategy identified by Single Policy Updating.
This network has been installed on your computer with the HUGIN software. You can find the network in the Samples
subdirectory of your HUGIN installation.

You can also find the samples at the HUGIN download area16.

6.1.2 The Stud Farm

(Requires minimal knowledge in the area of genealogy)

A Constructed Example from a Stud Farm

The stallion Alan has with the mare Ann sired Betsy and with the mare Alice sired Benny. Betsy has with Bill born
Carl, and Benny has with Bonnie sired Cecily. Both Bill and Bonnie are born by Ann, but their fathers (A1 and (A2)
are in no way related. Carl and Cecily have just born a colt, Dennis.

16 http://download.hugin.com/samples

© Copyright 2020, HUGIN EXPERT A/S 497

http://download.hugin.com/samples

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 1: Dennis’s genealogy.

It turns out that Dennis suffers from a life threatening hereditary disease carried by a recessive gene a. The corre-
sponding dominant gene is A. The disease is so serious that Dennis is put down instantly, and as the stud farm wants
the gene out of the production, Carl and Cecily are taken out of breeding because they both must be carriers of the
gene having genotype Aa.

Now the problem is: Which other horses are to be taken out of breeding? Bonnie is a very fine mare, whereas Alan
more easily can be replaced in the production. What will the stud farm be best off doing? It would be nice to know the
probabilities of each of the horses being carrier of the sick gene. Normally the probability of being carrier is known to
be 0.01.

Bayesian Networks

The domain of the inheritance of genes in the stud farm can easily be modeled by a Bayesian network (BN). Actually,
the genealogy in Figure 1 only needs a conditional probability table (CPT) on each node to be a BN. First we specify
the states of the nodes: All horses except Dennis are either carriers (Aa) or not (AA) since none of them are sick. We
give them states “AA” and “Aa”. Each of the nodes in the upper layer in Figure 1 have the CPT shown in Table 1. The
others except for Dennis have the CPT shown in Table 2. Dennis has the CPT shown in Table 3.

Table 1: CPT of the nodes in the upper layer (Alan used as an example).

Table 2: CPT of the nodes in the middle layers (Betsy used as an example).

498 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Table 3: CPT of the node Dennis: P(Dennis | Carl, Cecily).

This BN has been implemented using the HUGIN Graphical User Interface in less than half an hour. Then, the
evidence that Dennis is aa is entered and sum propagation is performed. The result is shown in Figure 2.

Figure 2: The probabilities of the horses being carriers (Aa) of the sick gene.

In Figure 2, we can see that it is very likely that Betsy is carrier of the sick gene. Both her parents (Ann and Alan) also
has great probability of being carriers. However, a more thorough investigation shows that it is very unlikely that both
of them are carriers at the same time. In Figure 3 we see that if Alan is known to be carrier, it becomes most unlikely
that Ann is also carrier. This is because a sick gene is only inherited from one parent. The Figure shows that the gene
is inherited from Alan to Betsy and Benny to Carl and Cecily.

The conclusion to the results would be very dependent on how much the farmer wants to be sure of getting the sick
gene out of production. He can never be absolutly sure that he gets rid of the right horses, but he should at least get
rid of Betsy, Ann and Bonnie. If also wants to get rid of Alan because he is easily replaced this would have no effect
if he does not also get rid of Benny since Benny probably has inherited the sick gene if Alan has it.

© Copyright 2020, HUGIN EXPERT A/S 499

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: If we assume that Alan carries the sick gene, this Figure shows that Ann is probably not carrier.

This network has been installed on your computer with the HUGIN software. Open the network in the HUGIN
Graphical User Interface (Note: not all browsers can open HUGIN directly). You can find the network in the directory
where you installed HUGIN (e.g. C:Program FilesHuginHugin LiteSamples).

You can also find the samples at the Hugin download area17.

Comments

A long list of areas have essential characteristics in common with the above example, e.g. medical diagnosis and
treatment, credit valuation of costumers, search for minerals, monitoring of biological production plants, image un-
derstanding, information retrieval, and fault analysis.

The areas are characterized by a cause-effect structure, where effects are not completely determined. Sometimes
an event has one effect and sometimes it has another. This phenomenon is called causal uncertainty. A domain
characterized by causal uncertainty can be modeled by a BN.

Another characteristic of the areas is that the number of essential properties can not be observed directly. This is the
diagnosis problem: You know only the symptoms, and from them you must conclude the causes. You must so to speak
reason in the opposite direction of the links in the network.

17 http://download.hugin.com/samples

500 © Copyright 2020, HUGIN EXPERT A/S

http://download.hugin.com/samples

HUGIN Graphical User Interface Documentation, Release 8.9

6.1.3 Monty Hall Puzzle

Describing the Monty Hall Puzzle

The Monty Hall puzzle gets its name from an American TV game show, “Let’s make a deal”, hosted by Monty Hall.
In this show, you have the chance to win some prize if you are lucky enough to find the prize behind one of three
doors. The game goes like this:

• You are asked to select one of the three doors.

• Monty Hall (who knows where the prize is) opens another door behind which there is no prize.

• You are asked if you want to alter your selection (select the other closed door).

• You get the prize if it is behind the door you selected.

The problem of the puzzle is: What should you do at your second selection? Some would say that it does not matter
because it is equally likely that the prize is behind the two remaining doors. This, however, is not quite true. The
right answer is that you have the best chance of winning if you alter your selection - odds 2/3 in stead of 1/3. In the
following, the solution is computed through the use of a simple Bayesian network (page 19).

Finding the Solution Using a Bayesian Network

The Monty Hall puzzle can be modeled with three random variables: Prize, First Selection, and Monty Opens.

• Prize represents the information about which door hides the prize. This means that it has three states: “Door 1”,
“Door 2”, and “Door 3”.

• First Selection represents your first selection. This variable also has the three states: “Door 1”, “Door 2”, and
“Door 3”.

• Monty Opens represents Monty Halls choice of door when you have made your first selection. Again, we have
the three states: “Door 1”, “Door 2”, and “Door 3”.

The door hiding the prize is known to Monty and thus Prize has an influence on Monty Opens. Monty will never
choose to open the door of your first selection, so also First Selection has an influence on Monty Opens. This give us
the network shown in Figure 1.

Figure 1: Bayesian network of the Monty Hall puzzle. The causal links describe that both Prize and First Selection
have an influence on Monty Opens.

The conditional probability table (CPT) of Prize is shown in Table 1 (indicating ignorance about where the prize is
hidden).

© Copyright 2020, HUGIN EXPERT A/S 501

HUGIN Graphical User Interface Documentation, Release 8.9

Table 1: P(Prize).

The CPT of First Selection is shown in Table 2 (the probabilities of this table are unimportant, as you will always
select a specific state of this variable when you use the network).

Table 2: P(First Selection).

Table 3 shows the CPT of Monty Opens. This table states that if the prize is behind Door 1 and you have chosen Door
3, then Monty will open Door 2 for sure, since this door is the only possible door he can open. If you have selected
the right door in your first selection, he will randomly choose one of the two other doors.

Table 3: P(Monty Opens | Prize, First Selection).

The network shown in Figure 1 with nodes having the CPTs of Table 1, 2, and 3 can be constructed very quickly using
the Hugin Graphical User Interface. Right after compilation, the Node List Pane of the Hugin Graphical User Interface
will appear as in Figure 2, which is an interactive Java applet allowing you to select first your own first selection and
then the door opened by Monty. After this, the solution appears from the probabilities of Prize. The functionality of
this applet is very similar to the functionality of the Hugin Graphical User Interface.

502 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Showing the list of nodes (variables) of the Monty Hall puzzle domain.

Figure 2 shows that it will always be best for you to alter your selection when Monty has opened a door (gives you
66.67% chance of winning the prize).

An easy way to convince yourself that this is true goes like this: At first you have 33.33% chance of choosing the right
door and there is 66.67% chance of the prize being somewhere else. You know that Monty is going to open an empty
door so when he does, this should not change a thing about your belief of your door being the right one. You still have
33.33% chance of having selected the right door. Thus there must be 66.67% chance of the prize being somewhere
else (behind the last door).

6.2 Modeling Examples

In this section, we present a series of examples meant to give you ideas of the connection between a textual description
and a network model.

Taenkeboks (page 504) gives a good and thorough description of how you can get from a description of a simple game
of dice to an influence diagram that can help find a winning strategy. The network is the result of a 7th semester project
at Aalborg University, Denmark, and the documentation is written by one of the participating students.

Asia (page 510) is a small Bayesian network that computes the probability of a patient having tuberculosis, lung cancer
or bronchitis respectively based on different factors - for example whether or not the patient has been to Asia recently.

Poker (page 511) is a Bayesian network that models a simplified version of the game of poker. The network can help
predict who has the best hand - your or your opponent.

The Mildew examples (page 513) are four different influence diagrams modeling the situation where a farmer has to
decide on a treatment with fungicides for a wheatfield. The influence diagrams model different scenarios depending
on the information available.

© Copyright 2020, HUGIN EXPERT A/S 503

HUGIN Graphical User Interface Documentation, Release 8.9

Implementations of these examples come with the installation of any version of HUGIN. If you have lost them or have
an older installation of HUGIN, you have the opportunity to download them18.

If you have made some examples of your own, you are welcome to put them at forum.HUGIN.com19. Here you can
also find discussions, links and other things related to the field of Bayesian networks.

6.2.1 Introduction

This document describes how to build a (limited-memory) influence diagram (LIMID) to model a simplified version
of the dice game called “Tænkeboks”. The objective of this modeling is to find a winning strategy against a presumed
strategy of the opponent. The influence diagram is designed and afterwards implemented in HUGIN. Finally this
implementation is used to determine an optimal counter strategy against the opponent’s presumed strategy.

This document has been written by Michael Höhle with the support of Søren Andersen, Lisa Elgaard, Brian Jensen,
Brian Kristiansen and Søren Mogensen. The network and it’s documentation originate from a DAT3 (7th semester)
project worked out by group C1-213 at Department of Computer Science, Aalborg University20, in the fall of 1997.
The supervisor of the DAT3 project was Dennis Nilsson.

The Simplified Tænkeboks

Consider the following simplified version of the dice game Tænkeboks. Two players named Arne and Bente (typical
Danish names) participate in the game. Each player holds a two sided die (with the labels “1” and “2”).

Initially both players roll their die without showing the result to each other. The goal of the game is to guess how many
identical die values are present based upon knowledge of one’s own die. The following bids are possible:

• 1 (at least one “1”),

• 2 (at least one “2”),

• 2·1 (both dice show “1”),

• 2·2 (both dice show “2”).

Assume Arne starts the game. He has to choose between one of the above 4 bids. After Arne’s bid, Bente has to decide
whether to believe in Arne’s bid and hence bid up or to call. If Bente doesn’t call it is Arne’s turn to consider Bente’s
last bid. The game continues until one of the players decides to call. A call results in both players revealing their die
thus resolving whether the bid which was called upon was present on the table or not. This process determines winner
and loser of the game.

Influence Diagrams and the Simplified Tænkeboks

Imagine that one foggy night at the pub you convince your best friend Arne to play some rounds of the above game.
To make things more interesting the loser of each game has to buy the next round of beer. What is a good strategy for
Bente?

There are several approaches e.g. one could analyze the above game by game theoretic methods or one could try to
use influence diagrams. Since game theory tends to be quite complex and cumbersome we shall concentrate on the
latter.

Based on an estimate of Arne’s strategy we will solve the influence diagram in order to find an optimal counter strategy.
The key problem is how to make a good estimate of Arne’s strategy. We assume that you have been playing quite a lot
of games of simple Tænkeboks against Arne and hereby achieved a pretty good understanding of his strategy.

18 http://download.hugin.com/samples
19 http://forum.hugin.com/
20 https://www.cs.aau.dk/

504 © Copyright 2020, HUGIN EXPERT A/S

http://download.hugin.com/samples
http://forum.hugin.com/
https://www.cs.aau.dk/

HUGIN Graphical User Interface Documentation, Release 8.9

An Influence Diagram for Simple Tænkeboks Implemented in HUGIN

For the sake of simplicity we assume from now on that Arne always is in the lead, i.e., he always is the first to bid in a
game.

Determining the Chance and Decision Variables

Initially we need to find out which chance and decision variables we need and which states they should have. A
prudent way to obtain this is to find the actors in our game and the actions they can perform.

By analyzing the maximal sequence of bids in one game we determine the maximum amount of bids for each player.

Arne: 1, Bente: 2, Arne: 2·1, Bente: 2·2, Arne: call

Arne has a maximum of three bids during one game. Bente’s maximum is two bids.

Every action is now converted into either a chance variable or a decision variable according to the following rule: If
the action is a decision which has to be made by the decision maker it is converted into a decision variable, otherwise
it becomes a chance variable. The result is:

Note: the variable “Bente’s die” which corresponds to the result of Bente rolling her die becomes a chance variable,
since Bente has no influence on the result of rolling the die.

After finding the variables for our influence diagram it is time to consider which states they should have. The states of
the die-variables represent the outcome of rolling a die, whereas the states of the bid-variable reflect the possible bids
at the point of the bid-variable. Note how the number of states is based on the maximum bid sequence.

© Copyright 2020, HUGIN EXPERT A/S 505

HUGIN Graphical User Interface Documentation, Release 8.9

Causal and Information Dependences

The next task is to establish the dependences - represented by links - between the found variables. Our objective with
the links is twofold:

• The links indicate the progress of the game

• a link into one of player X’s bid-variables reflects the following: X’s bidding strategy is based on information
about the state of the variable from which the link comes.

Experience from playing simple Tænkeboks tells us that when bidding you usually only consider your own dice and
the opponent’s last bid. The two objectives and the above experience result in the following diagram shown in Figure
1.

Figure 1: The chance variables and decision variables in the influence diagram together with their dependences.

Note: Arne’s strategy on his first bid only depends on the value of his die. We don’t exactly know his strategy, but
we will use our best guess.

The Utility Functions

After introducing the decision variables it is also necessary to add utility functions which determine the outcome of
taking a decision. Our utility functions have two goals

1. To determine whether Bente wins or loses once a player calls.

2. To ensure that Bente only performs valid actions (e.g. restrict bidding 1 after Arne bid 2)

The resulting diagram with all the utilities is displayed in Figure 2. To ensure item 1 utility functions are placed
between consecutive bids (e.g. U5 between BB1 and AB2). These functions are connected to both the consecutive bid
variables and the 2 die variables. All this information is necessary in order to check if the latter bid was a call and if
so whether the bid before the call was present or not. This step result in the utility functions U4,U5,U6 and U7. Item
2 is achieved by putting utility functions between AB1 and BB1 (U1) as well as between AB2 and BB2 (U2). Later
when assigning values to the utility functions all the illegal actions will be assigned very low values.

506 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 2: Influence diagram for our model. U1 and U2 guarantee that Bente’s bids are valid and U4, U5, U6, and U7
determine whether Bente wins or not.

Since U1’s set of parents is a subset of U4’s parents the two can be combined in an additive way. This simply means
that U1’s utility values are added to U4’s values in the appropriate columns of U4. Similarly U2 and U6 are combined.
The resulting influence diagram is displayed in Figure 3.

© Copyright 2020, HUGIN EXPERT A/S 507

HUGIN Graphical User Interface Documentation, Release 8.9

Figure 3: The final influence diagram modeling simple Tænkeboks. Notice how the utility functions have been
combined.

Assigning Probabilities and Utility Functions to the Variables

After determining the variables, functions, and their dependences it is necessary to assign the conditional probabilities
to the chance variables and utility values to the utility functions. This task can be divided into three subtasks. The gory
details of the exact tables implemented in HUGIN are not that important, but are included should you become curious.

1. Assigning probabilities to the two die variables. [Gory details] (page 518)

2. Assigning conditional probabilities to Arne’s bid variables depending on our estimate of his strategy.

To accomplish this task we need a good guess of Arne’s strategy. To keep things simple we assume that he is following
the pretty reasonable deterministic strategy:

• When starting he bids what his die shows. Hereby his bid will always be present on the table.

• If Bente bids 2 and he rolls “1” then he calls.

• If Bente bids 2 and he rolls “2” then he bids 2·2.

• If Bente bids 2·1 or 2·2 he always calls.

In a real game it is more likely that Arne will follow a non-deterministic strategy to conceal his real strategy. Once
you get the hang of how the optimal counter strategy is found you can use the influence diagram straight away to find
counter strategies against non-deterministic strategies as well. [Gory details] (page 518) 3. Assigning values to the
utility functions so they fulfill the demands from the preceding section. [Gory details] (page 518)

508 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Finding the Optimal Strategy

We are ready to use the influence diagram to find an optimal counter strategy for Bente against Arne’s strategy.

Figure 4: Screenshot from HUGIN where the evidence BD=1 and AB1=1 was entered and since sum-propagated. The
action 2·1 in BB1 has the highest expected utility (expected utility = 1).

The following algorithm in HUGIN gives us the desired result:

1. Initialize the network

2. For each state X of Bente’s die variable do

1. enter X as 100% evidence (click on X in run-mode)

2. For each possible state Y of Arne’s AB1 variable do

1. enter Y as 100% evidence (click on Y in run-mode)

2. sum propagate

3. The best bid for Bente in BB1 is the action in BB1 with the highest expected utility. (see Figure 4)

In step 2.1 we only loop through the possible states of AB1. With Arne’s strategy it is for example impossible that
Arne bids 2·1 in AB1.

Had the game been longer it would have been necessary to insert the optimal action in BB1 as evidence and loop
through the states in AB2 in order to determine the optimal action in BB2. But since Bente never really gets to bid a
second time this step isn’t included in the algorithm.

By applying this algorithm the following counter strategy for Bente is determined:

© Copyright 2020, HUGIN EXPERT A/S 509

HUGIN Graphical User Interface Documentation, Release 8.9

For example, if Bente rolls 2 and Arne bids 2 in his first bid then the strategy tells Bente to bid 2·2. In the situation
where Bente rolls a 1 and Arne bids 2 three actions are equally good: 2·1,2·2 and call. To get a deterministic strategy
it is sufficient to simply pick one of the possibilities. The NA’s in the table symbolize that a situation cannot occur
with Arne’s choice of strategy. All of Bente’s choices are therefore equally good.

The question is how good this counter strategy actually is. By simulating games between the two strategies in the four
possible configurations of the dice ([AD=1 and BD=1], [AD=1 and BD=2], [AD=2 and BD=1] or [AD=2 and BD=2])
it becomes obvious that Bente will win 75% of the games! In other words, out of 12 rounds of beer Bente (you) will
only have to pay for the 3 while Arne will have to pay for 9. Cheers!

Conclusion

An influence diagram to model a simple version of the game Tænkeboks was designed and since implemented in
HUGIN. The resulting diagram is displayed in Figure 3 and the HUGIN implementation can be downloaded from the
HUGIN networks page21.

Arne’s strategy was guessed and entered into the tables of the diagram. Using HUGIN to enter evidence and propagate,
an optimal counter strategy for Bente was found where she could win 75% of the games.

Perspectives

A game theoretic analysis of the game reveals that the strategy assumed for Arne is not a very good one. He could
e.g. prefer a strategy where he always bids 2·(whatever he rolled). Hereby he is certain to win 50% of the games -
even against Bente’s counter strategy found with the influence diagram! (Game theoretic note: The mentioned strategy
combination forms a Nash-equilibrium where both players receive a payoff of zero.)

The assumption that Arne follows a deterministic strategy is pretty unlikely. By changing the values in the tables of
Arne’s bid variables Arne can easily be modified to play with a randomized strategy. The algorithm described above
also works to find a deterministic counter strategy against Arne’s randomized strategy.

Simple Tænkeboks is quite a boring game. Possible enhancements to increase the joy could be: more sides on your
die, more dice per player, a notion of jokers, or even extra players. The problem is that even small enhancements make
the complexity of the influence diagram explode.

This network has been installed on your computer with the HUGIN software. Open the network in the HUGIN
Graphical User Interface (Note: not all browsers can open HUGIN directly). You can find the network in the directory
where you installed HUGIN (e.g. C:Program FilesHuginHugin LiteSamples). You can also find the samples at the
HUGIN download area22.

6.2.2 Asia (the Chest Clinic)

This example originates from the seminal paper of Lauritzen & Spiegelhalter (1988) (page 519).

Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer, bronchitis, more than one of these diseases
or none of them. A recent visit to Asia increases the risk of tuberculosis, while smoking is known to be a risk factor
for both lung cancer and bronchitis. The results of a single chest X-ray do not discriminate between lung cancer and
tuberculosis, as neither does the presence or absence of dyspnoea.

If we learn the fact that a patient is a smoker, we will adjust our beliefs (increased risks) regarding lung cancer and
bronchitis. However, our beliefs regarding tuberculosis are unchanged (i.e., tuberculosis is conditionally independent
of “smoking” given the empty set of variables). Now, suppose we get a positive X-ray result for the patient. This
will affect our beliefs regarding tuberculosis and lung cancer, but not our beliefs regarding bronchitis (i.e., bronchitis
is conditionally independent of X-ray given smoking). However, had we also known that the patient suffers from

21 http://download.hugin.com/samples
22 http://download.hugin.com/samples

510 © Copyright 2020, HUGIN EXPERT A/S

http://download.hugin.com/samples
http://download.hugin.com/samples

HUGIN Graphical User Interface Documentation, Release 8.9

shortness-of-breath, the X-ray result would also have affected our beliefs regarding bronchitis (i.e., “bronchitis” is not
conditionally independent of “X-ray” given “smoking” and “dyspnoea”).

A Bayesian network for the knowledge described above can look like this:

The above figure shows the node labels inside each node. A unique node name is assigned to each node in the network
node names are: “Visit to Asis?” has name A, “Smoker?” has name S, “Has tuberculosis” has name T, “Has lung
cancer” has name L, “Has bronchitis” has name B, “Tuberculosis or cancer” has name E, “Positive X-ray?” has name
X, and “Dyspnoea?” has name D.

This network has been installed on your computer with the HUGIN software. Open the network in the HUGIN
Graphical User Interface (Note: not all browsers can open HUGIN directly). You can find the network in the directory
where you installed HUGIN (e.g., C:Program FilesHuginHugin LiteSamples).

You can also find the samples at the HUGIN download area23.

6.2.3 A simplified poker game

This example originates from the textbook Bayesian Networks and Decision Graphs (page 519).

Consider a simplified poker game with the following rules:

Each player receives three cards and is allowed two rounds of changing cards. In the first round you may discard any
number of cards from your hand and get replacements from the pack of cards. In the second round you may discard at
most two cards.

The various types of hands are classified in the following way (in increasing rank): nothing special, 1 ace, 2 of the
same value, 2 aces, flush (3 of a suit), straight (3 of consecutive values), 3 of the same value, straight flush.

The following Bayesian network can compute the probability of you having the best hand after the two ronds of
changing, based on the number of cards your opponent has discarded and an assumed strategy of the opponent:

23 http://download.hugin.com/samples

© Copyright 2020, HUGIN EXPERT A/S 511

http://download.hugin.com/samples

HUGIN Graphical User Interface Documentation, Release 8.9

The nodes OH0, OH1 and OH2 represent the opponents hand initially, after the first change (FC) and after the second
change (SC) respectively. MH represents my hand before the bidding starts. Note that we have exact knowledge of
the state of this node, so the initial distribution is not important.

Of course the probabilities of the various states of OH2 depend on the presumed strategy of the opponent.

In the network enclosed in the installations of HUGIN, the following strategy for the opponent is assumed:

• If nothing special, then change 3.

• If 1 ace, then keep the ace.

• If 2 of consecutive values or 2 of a suit or 2 of the same value, then discard the third card.

• If 2 of a suit and 2 of consecutive values, then keep 2 of a suit.

• If 2 of a suit and 2 of the same value or 2 of consecutive values and 2 of the same value, then keep the 2 of the
same value.

• If flush, straight, 3 of the same value or straight flush, then keep it.

Now you can enter the states of FC, SC and MH and get the probability of you having the best hand.

This network has been installed on your computer with the HUGIN software. Open the network in the HUGIN
Graphical User Interface (Note: not all browsers can open HUGIN directly). You can find the network in the directory
where you installed HUGIN (e.g. C:Program FilesHuginHugin LiteSamples). You can also find the samples at the
HUGIN download area24.

24 http://download.hugin.com/samples

512 © Copyright 2020, HUGIN EXPERT A/S

http://download.hugin.com/samples

HUGIN Graphical User Interface Documentation, Release 8.9

6.2.4 The Mildew examples

These examples originates from An introduction to Bayesian Networks (page 519).

The networks shown in this example have been installed on your computer with the HUGIN software. Open the
network in the HUGIN Graphical User Interface (Note: not all browsers can open HUGIN directly). You can find the
networks in the directory where you installed HUGIN.

You can also find the samples at the HUGIN download area25.

The basic situation

Approximately two months before harvesting a wheat field a farmer can observe the state of the crop and he can
observe whether it has been attacked by mildew. If there is an attack he should decide on a treatment with fungicides.

The limited memory influence diagram below models this situation:

There are five chance nodes:

• The actual state of the crop, Q with states fair (f), average (a), good (g) and very good (v).

• The actual mildew-situation, M with states no, little (l), moderate (m) and severe (s).

• The state of the crop at harvest time, H with the states from Q plus rotten (r), bad (b) and poor (p).

• The observation, OQ, of Q.

• The observation, OM, of M.
25 http://download.hugin.com/samples

© Copyright 2020, HUGIN EXPERT A/S 513

http://download.hugin.com/samples

HUGIN Graphical User Interface Documentation, Release 8.9

There is also an action node, A (modeling the fungicide-treatment) with actions no, light (l), moderate (m) and heavy
(h).

Now we extend the example with a decision on the time of harvest (T). This decision is to be made two months after
the decision on fungicides. Note that H models the state of the field at the time of decision T.

When there are more than one decision node in the model, the computation of the expected utility of an action requires
knowledge of what will be known when future decisions are made. For each decision node it is important to specify
using Informational links the information known to the decision maker at the corresponding decision. A link from
node X to decision node D indicates that the state of X is known when the decision on D is made.

The model depends on what information is available at the time of deciding on T. We present four different scenarios:

Scenario 1

In this scenario there is no further information.

HUGIN computes the (optimal) strategy by Single Policy Updating and the expected utility function and the posterior
probability distribution for each node under the strategy.

514 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Scenario 2

In this scenario the state of H is known. This means that there is a link from H to T. A link from a chance node to a
decision node means that evidence on the chance node has to be available at the time of the decision in order for the
utilities to be computed correctly.

Scenario 3

In this scenario there is an observation on H available, but it is imprecise, so it doesn’t necessarily show the actual
state of the crop. Still it has an impact on our belief in the state of H and also on the expected utilities of the various
possibilities for T.

© Copyright 2020, HUGIN EXPERT A/S 515

HUGIN Graphical User Interface Documentation, Release 8.9

Scenario 4

In this scenario the farmer does not recall the observations on OQ and OM made prior to decision A nor does he recall
the decision made at A. In this example the policy on T is a function of OH only.

6.2.5 Competitive Analysis Bayesian Networks

Author: Professor Philippe Baumard, University of Versailles, France

These two Bayesian networks are part of a series of 30 Strategic Analysis Bayesian networks developed for teaching
MBA students competitive analysis, at New York University Stern School of Business. They are based on strategic
management and industrial economics literature. Probabilities have been entered as to reflect findings of major authors.

“Competitive Asymmetries” assesses the threat of an anti-trust case based on industry structure and the firm’s position
in this industry.

“Threat of Entry” assesses the probable entry strategy of a new entrant, based on the industry characteristics.

These networks, along with 28 others, are included in a CD-Rom coming along with a book entitled “Competitive-
ness and Information Systems” (Compétitivé et Systèmes d’Information), forthcoming in October 1998, by Mas-
son/InterEditions in Paris. The book develops a Bayesian-based methodology and tools for assessing the contributions
of information technologies and systems to a firm’s competitiveness.

516 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Competitive Asymmetries

This network has been installed on your computer with the HUGIN software. Open the network in the HUGIN
Graphical User Interface (Note: not all browsers can open HUGIN directly). You can find the network in the directory
where you installed HUGIN (e.g. C:Program FilesHuginHugin LiteSamples). You can also find the samples at the
HUGIN download area26.

Threat of Entry

This network has been installed on your computer with the HUGIN software. Open the network in the HUGIN
Graphical User Interface (Note: not all browsers can open HUGIN directly). You can find the network in the directory
where you installed HUGIN (e.g. C:Program FilesHuginHugin LiteSamples). You can also find the samples at the
HUGIN download area27.

26 http://download.hugin.com/samples
27 http://download.hugin.com/samples

© Copyright 2020, HUGIN EXPERT A/S 517

http://download.hugin.com/samples
http://download.hugin.com/samples

HUGIN Graphical User Interface Documentation, Release 8.9

6.2.6 The Two Dice Variables

The die variable represents the outcome of rolling a two-sided die. We assume that both Arne and Bente are playing
with non-skew dice, so for both variables there is a 50% probability to obtain “1” and 50% for “2”.

Arne’s Bid Variables

It is pretty easy to convert our guess of Arne’s strategy to conditional probabilities. As an example we show the table
of AB1:

The only thing that should be noted is that we in AB2 and AB3 for technical reasons respond to a “call” from Bente
with a “call”. This is is to ensure that once a game is over no player starts to bid again and no extra utility values are
granted for a game that is already won!

The Utility Functions

This task is the most difficult of the three and you are advised to consult net file for the exact tables. The utility
functions can be grouped into two:

1. U5 and U7 which determine the winner of a game.

2. U1U4 and U2U6 which ensure that Bente only performs valid actions and determine the winner of a game.

The first ones are pretty straightforward. In both U5 and U7 it is Arne who’s turn it currently is. For each situation
where Arne calls the winner of the game is determined from the states of the two die variables. In case Bente wins we
assign this situation a utility value of 1, should Bente lose the utility is set to -1.

Situations where Arne doesn’t call are so called “neutral situations” since the game continues and no winner is found.
Hence we assign neutral situations the value 0.

With our “call->call” trick the situation where both players called corresponds to an already finished game. Bente’s
outcome has therefore already been found, hence this situation is also assigned the value 0.

For U1U4 and U2U6 some extra work has to be done, because it is Bente’s turn. The assigning of values follows the
same schema as for U5 and U7: Should Bente decide to call her outcome is determined.

All the other possible bids are either neutral bids since they don’t end the game or illegal bids. Neutral bids are
assigned the value 0 whereas illegal bids are assigned the value -10 - a real punishment! (the proper value for this
situation would be minus infinity, but -10 will do for our game). We enforce our “call->call” trick by making all other
bids than call illegal actions once Arne called.

518 © Copyright 2020, HUGIN EXPERT A/S

CHAPTER

SEVEN

REFERENCES

• S. K. Andersen, K. G. Olesen, F. V. Jensen & F. Jensen (1989). Hugin – a shell for building Bayesian
belief universes for expert systems. In Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, pages 1080-1085, Detroit, Michigan, Aug. 20-25.

• I. Beinlich, H. Suermondt, R. Chavez & G. Cooper (1989). The ALARM monitoring system: A case study
with two probabilistic inference techniques for belief networks. Proceedings of the second European Conference
on Artificial Intelligence in Medicine, pp 247-256.

• B. Boerlage (1992). Link Strength in Bayesian Networks. MSc thesis, Department of Computer Science,
University of British Columbia, Canada. Also Tech. Report 94-17, Department of Computer Science, University
of British Columbia, Canada.

• O. Cappe & E. Moulines. Online em algorithm for latent data models. Journal of the Royal Statistical Society
Series B (Statistical Methodology), 71(3):593-613, 2009.

• G. Cooper (1984). NESTOR: A computer-based medical diagnostic aid that integrates causal and probabilistic
knowledge. PhD thesis, Medical Information Sciences, Stanford University, Stanford, CA.

• R. G. Cowell & A. P. Dawid (1992). Fast retraction of evidence in a probabilistic expert system. Statistics and
Computing, 2:37-40.

• A. P. Dawid (1992). Applications of a general propagation algorithm for probabilistic expert systems. Statistics
and Computing, 2:25-36.

• D. Heckerman, J. Breese & K. Rommelse (1994). Troubleshooting under Uncertainty. Technical report msr-
tr-94-07. Microsoft Research, Advanced Technology Division, Microsoft Corporation.

• F. Jensen (1994). Implementation aspects of various propagation algorithms in Hugin. Research Report R-94-
2014, Department of Mathematics and Computer Science, Aalborg University, Denmark.

• F. Jensen & S. K. Andersen (1990). Approximations in Bayesian belief universes for knowledge-based sys-
tems. In Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, pages 162-169, Cam-
bridge, Massachusetts, July 27-29.

• F. Jensen, F. V. Jensen & S. L. Dittmer (1994). From influence diagrams to junction trees. In R. L. de
Mantaras and D. Poole, editors, Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence,
pages 367-373, Seattle, Washington, July 29-31. Morgan Kaufmann, San Mateo, California.

• F. V. Jensen, S. L. Lauritzen & K. G. Olesen (1990(1)). Bayesian updating in causal probabilistic networks
by local computations. Computational Statistics Quarterly, 4:269-282.

• F. V. Jensen, K. G. Olesen & S. K. Andersen (1990(2)). An algebra of Bayesian belief universes for
knowledge-based systems. Networks, 20(5):637-659. Special Issue on Influence Diagrams.

• F. V. Jensen, B. Chamberlain, T. Nordahl & F. Jensen (1991). Analysis in Hugin of data conflict. In P. P.
Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence, volume 6,
pages 519-528. Elsevier Science Publishers, Amsterdam, The Netherlands.

© Copyright 2020, HUGIN EXPERT A/S 519

HUGIN Graphical User Interface Documentation, Release 8.9

• F. V. Jensen (2001). Bayesian Networks and Decision Graphs, Springer.

• F. V. Jensen (1996). An Introduction to Bayesian Networks, Springer.

• U. Kjærulff (1990). Triangulation of graphs - algorithms giving small total state space. Research Report R-90-
09. Department of Mathematics and Computer Science, Aalborg University, Denmark.

• S. L. Lauritzen (1992). Propagation of probabilities, means, and variances in mixed graphical models. Journal
of the American Statistical Association (Theory and Methods), 87(420):1098-1108.

• S. L. Lauritzen (1995). The EM algorithm for graphical association models with missing data. Computational
Statistics & Data Analysis, 19:191-201.

• S. L. Lauritzen, A. P. Dawid, B. N. Larsen & H.-G. Leimer (1990). Independence properties of directed
Markov fields. Networks, 20(5):491-505. Special Issue on Influence Diagrams.

• S. L. Lauritzen and D. Nilsson. Representing and solving decision problems with limited information. Man-
agement Science, 47(9):1235–1251, Sept. 2001.

• S. L. Lauritzen & D. J. Spiegelhalter (1988). Local computations with probabilities on graphical structures
and their application to expert systems. Journal of the Royal Statistical Society, Series B (Methodological),
50(2):157-224.

• J. Matheson (1990). Using Influence diagrams to value information and control. Influence Diagrams, Belief
Networks and Decision Analysis.

• R. Neapolitan (1990). Probabilistic Reasoning in Expert Systems: Theory and Algorithms. John Wiley & Sons,
New York.

• K. G. Olesen, S. L. Lauritzen & F. V. Jensen (1992). aHugin: A system creating adaptive causal probabilistic
networks. In D. Dubois, M. P. Wellman, B. D’Ambrosio, and P. Smets, editors, Proceedings of the Eighth
Conference on Uncertainty in Artificial Intelligence, pages 223-229, Stanford, California, July 17-19. Morgan
Kaufmann, San Mateo, California.

• J. Pearl (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo, CA.

• J. Pearl (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press, UK.

• D. Poole & E. Neufeld (1988). Sound probabilistic inference in Prolog: An executable specification of influence
diagrams.

• R. Qi (1994). Decision graphs: Algorithms and applications to influence diagram evaluation and high-level
path planning under uncertainty. PhD thesis, Department of Computer Science, University of British Columbia,
Canada. Also Tech. Report 94-27, Department of Computer Science, University of British Columbia, Canada.

• H. Raiffa (1968). Decision Analysis, Introductory Lectures on Choices under Uncertainty. Addison-Wesley,
Reading, Massachusetts.

• L. K. Rasmussen (1995(1)). Bayesian network for blood typing and parentage verification of cattle. Dina
research report no. 38. Department of Mathematics and Computer Science, Aalborg University, Denmark.

• L. K. Rasmussen (1995(2)). BOBLO: an expert system based on Bayesian networks to blood group determi-
nation of cattle. Research report 16. Research Center Foulum, Denmark, PB 23, 8830 Tjele, Denmark.

• J. Smith, S. Holtzman & J. Matheson (1993). Structuring conditional relationships in influence diagrams
Operations Research, 41(2):280-297.

• D. J. Spiegelhalter & S. L. Lauritzen. Sequential updating of conditional probabilities on directed graphical
structures. Networks, 20(5):579-605, Aug. 1990. Special Issue on Influence Diagrams.

• P. Spirtes, C. Glymour & R. Scheines (2000). Causation, Prediction, and Search. MIT Press, Adaptive
Computation and Machine Learning, second edition.

520 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

• L. Zhang (1993). A computational theory of decision networks. PhD thesis, Department of Computer Science,
University of British Columbia, Canada. Also Tech. Report 94-8, Department of Computer Science, University
of British Columbia, Canada.

• S. L. Lauritzen and D. Nilsson. (2001) Representing and solving decision problems with limited information.
Management Science, 47(9):1235 - 1251, Sept. 2001.

© Copyright 2020, HUGIN EXPERT A/S 521

HUGIN Graphical User Interface Documentation, Release 8.9

522 © Copyright 2020, HUGIN EXPERT A/S

INDEX

A
About, 174
Absorb Node, 226
Adaptation, 228
Adaptation Button, 155
Adaptation Tutorial, 109
Adaptation Wizard, 249
Add Experience Table to all Chance

Nodes, 220
Add Fading Table to all Discrete

Nodes, 221
Add State, 221
Align, 141
Analysis Wiard, 242
Analysis Wizard - AIC/BIC/ll Help, 439
Analysis Wizard - Case Beliefs Help, 440
Analysis Wizard - Data Accuracy Help,

442
Analysis Wizard - Data Source Help, 444
Analysis Wizard - Dependencies Help, 445
Analysis Wizard - Sampling Help, 446
Application Update, 447
Approximate, 123
Arrange Tables, 222
Asia (the Chest Clinic) Example, 510
Auto Filtering, 335
Auto Prediction, 342
Auto Propagation, 126
Auto Update Graphs, 127

B
Bayesian Networks, 327
Belief Precision, 131
Binding Link, 148
Bug Report, 166

C
Cascade Windows, 143
Case and Data File Formats, 84
Case Files, 370
Case Generator, 373
Case Generator Button, 155

Case Generator Tutorial, 85
Casual Link, 147
Change Link Tool, 153
Chow-Liu Tree, 237
Close, 159
Close All, 159
Close Tables, 223
Code Wizard, 261
Collapse Instance Node, 214
Collapse Instance Nodes, 215
Color Chart, 143
Colpase Node List, 216
Competitive Analysis Example, 516
Compile, 124
Componens of the HUGIN Developement

Environment, 5
Component Tree, 144
Compress, 123
Conditional Independence and

Dependence, 330
Conditional Probability Table (CPT), 225
Constraints, 132
Continuous Chance Node, 208
Continuous Chance Tool, 152
Continuous-Discrete Node Value

Transfer Function, 116, 302
Convolution, 302
Copy, 157
Copy Table, 221
Correlation Analysis Dialog, 311
Cut, 158

D
D-Separation (Operation), 270
D-Separation (Theory), 271
Data Analysis, 407
Data Classifier Performance, 402
Data Conflict Analysis, 274
Data Conflict Analysis Help, 448
Data Files, 371
Data Frame, 373
Data Frame With Database Connection, 414

© Copyright 2020, HUGIN EXPERT A/S 523

HUGIN Graphical User Interface Documentation, Release 8.9

Data Matrix, 411
Data Processing, 389
Data Sequences, 381
Decision Node, 209
Decision Table, 218
Decision Tool, 152
Delete, 158
Delete State, 158
Discrete Chance Node, 208
Discrete Chance Tool, 152
Discrete Function Node, 213
Discrete Function Tool, 152
Discretization, 415
Display, 193
Distance Analysis Dialog, 314
Dynamic Bayesian Network, 332

E
Edit Menu, 181
Edit Mode, 122
EM Learning, 334
EM Learning Button, 155
EM Learning Tutorial, 103
EM Learning Wizard, 262
Enter Likelihood, 140
Evidence Sensitivity Analysis, 281
Evidence Sensitivity Analysis (Decision),

290
Exit, 160
Expand Instance Node, 214
Expand Instance Nodes, 215
Expand Node List, 215
Experience Tables, 216
Expression Builder Wizard, 256
Expressions, 149

F
Fading Tables, 217
Feature Selection Analyzer, 266
File Menu, 179
Function Node, 210
Function Node Tool, 151

G
Gaussian Distribution Function, 115
General Help, 193
Generate Network HTML Documentation, 164
Greedy Search-And-Score Structure

Learning, 241
Groups and Colors, 195

H
Help Menu, 180
Hidden Node Analyzer, 263

How to Build a (Limited Memory)
Influence Diagram, 43

How to Build a Bayesian Network, 26
How to Build an Object-Oriented

Bayesian Network, 55
Hugin Web Site, 193

I
Import Information, 419
Import Network Description from

Tables, 420
Information, 149
Initialize, 150
Input Node, 211
Instance Node, 209
Instance Node Replace Class, 129
Instance Tool, 151
Interface Node, 213
Interface Tab, 207
Introduction to (Limited Memory)

Influence Diagrams, 36
Introduction to Bayesian Networks, 18
Introduction to Object-Oriented

Networks, 50

J
Joint Configurations, 308
Junction Tree, 237

L
Layout Network Nodes, 145
Learning Wizard, 249
Learning Wizard - Data Dependences

Help, 430
Learning Wizard - Data Source Help, 432
Learning Wizard - EM Learning Help, 436
Learning Wizard - Feature Selection

Help, 433
Learning Wizard - Node Summary Help, 433
Learning Wizard - Prior Distribution

Knowledge, 433
Learning Wizard - Structural

Constraints Help, 437
Leave One Out Propagation, 361
Level of Significance, 118
License Agreement, 13
Limited Memory Influence Diagrams, 327
Link, 146
Link or Arc Reversal, 148
Link Tool, 153
Load Case, 426
Lock Dispaly of Evidence, 145

M
Main Window, 173

524 © Copyright 2020, HUGIN EXPERT A/S

HUGIN Graphical User Interface Documentation, Release 8.9

Manually Specify Table, 222
Markov Blanket, 120
Methods of Analysis, 270
Mildew Examples, 512
Model Verification, 330
Models, 227
Monitor Windows, 183
Monty Hall Puzzle Example, 500
Move Interface Node, 227

N
Net Language, 87
Network Attributes, 172
Network Menu, 172
Network Pane, 167
Network Properties, 167
Network Properties DBN Pane, 172
Network Window, 171
New, 159
Node, 196
Node Attributes, 204
Node Label, 196
Node List Pane, 227
Node Locator, 199
Node Name, 196
Node Properties, 196
Node State Generator, 205
Node Tab, 201
Node Table, 225
Node Table Tutorial, 62
Node Type, 201
NPC Algorithm, 231

O
Object-Oriented Network, 328
Occurence and Impact Loss Model, 304
Oil Wildcatter Example, 495
Online EM Adaptation, 229
OOBN EM Learning, 330
Open, 159
Open Tables, 217
Options Menu, 182
Output Node, 212

P
Paradigms of Expert Systems, 16
Parameter Sensitivity Analysis, 316
Parameter Sensitivity Wizard, 269
Paste, 157
PC Algorithm, 230
Poker Example, 511
Policy Window, 182
Prediction, 137
Preferences, 188

Print, 161
Print Network, 161
Print Node Table, 163
Print Probabilities, 163
Prop Max Fast Retract, 235
Prop Max Normal, 235
Prop Sum Fast Retract, 235
Prop Sum Normal, 234
Propagation, 230

R
Rebane-Pearl Polytree, 236
Recall Policies, 164
Recently Used Files, 426
Recompile, 126
Rename Network, 165
Report Beliefs, 166
Requisite Ancestors, 273
Requisite Parents, 272
Reset Uninstantiated Policies, 165
Resize Node, 144
Retract Evidence, 145
Reverse Link Tool, 154
Run Mode, 121

S
Save, 156
Save All, 156
Save All Classes in Single File As...,

157
Save As, 156
Save Case, 426
Save Elimination Order, 156
Save in a File without GUI Attributes,

426
Select All, 131
Select State, 130
Select Tool, 151
Show Class, 146
Show Last Error, 166
Show/Hide Node Locator, 149
Simulation, 119
Single Policy Update, 240
States Tab, 219
Statistics, 164
Store Policies, 165
Structural Uncertainties Help, 451
Structure Learning, 335
Structure Learning Help, 453
Structure Learning Tutorial, 95
Stud Farm Example, 497
System Requirements, 12

© Copyright 2020, HUGIN EXPERT A/S 525

HUGIN Graphical User Interface Documentation, Release 8.9

T
Table Generator, 72
Table Tab, 218
Tables Pane, 224
Tables Pane Button, 154
Taenkeboks Example, 504
Technoology, 6
Temporal Clone, 128
Text Labels, 129
the Exposure, 304
Tile Windows Horizontally, 142
Tile Windows Vertically, 142
Toggle Node List, 149
Toggle Private Nodes, 226
Toolbar, 155
Traverse Instance, 119
Tree Augmented Naive Bayes, 236
Two-Way Parameter Sensitivity, 322

U
Update Global Node and Link Groups, 150
Update Monitor Graphs, 150
Utility Node, 211
Utility Sensitivity Analysis, 291
Utility Table, 217
Utility Tool, 154

V
Value of information Analysis, 293
Versions, 11
View Menu, 176

W
Window List, 193
Window Menu, 177
Wizards Menu, 178
Write as BMP, 428
Write as PDF, 429
Write as SVG, 429

Z
Zooming, 160

526 © Copyright 2020, HUGIN EXPERT A/S

	Introduction
	The Origin of HUGIN
	Basic Concepts
	The HUGIN Development Environment

	The HUGIN Development Environment
	Components of the HUGIN Development Environment
	The HUGIN Decision Engine
	Application Program Interfaces
	The HUGIN Graphical User Interface
	Extra Features

	Bayesian Network Technology in the HUGIN Development Environment
	Inference
	Limited Memory Influence Diagrams
	Networks with Conditional Gaussian Variables

	Versions
	Commercial Versions
	Academic Versions
	Free Evaluation Version
	Deployment Licences
	Special HUGIN API Versions

	System Requirements
	Memory Requirements
	Application Programming Interfaces

	HUGIN Software License Agreement

	Tutorials
	Basic Concepts
	Learning More
	Paradigms of Expert Systems
	Introduction to Bayesian Network
	How to Build a Bayesian Network
	Introduction to (Limited Memory) Influence Diagrams
	How to Build a (Limited Memory) Influence Diagram
	Introduction to Object-Oriented Networks
	How to Build an Object-Oriented Bayesian Network
	Node Table Tutorial
	Table Generator Tutorial
	The Case and Data File Formats
	Case Generator Tutorial
	The Net Language
	Structure Learning Tutorial
	EM Learning Tutorial
	Adaptation Tutorial

	Manual
	Functions and Tools
	Gaussian (Normal) Distribution Function
	Continuous-Discrete Node Value Transfer Function
	Level of Significance
	Traverse Instance
	Simulation
	Markov Blanket
	Run Mode
	Edit Mode
	Compress
	Approximate
	Compile
	Recompile
	Auto Propagation
	Auto Update Graphs
	Temporal Clone
	Instance Node Replace Class
	Text labels
	Select State
	Select All
	Belief Precision
	Constraints
	Prediction
	Enter Likelihood
	Align
	Tile Windows Horizontally
	Tile Windows Vertically
	Cascade Windows
	Color Chart
	Component Tree
	Resize Node
	Layout Network Nodes
	Lock Display of Evidence
	Retract Evidence
	Show Class
	Link
	Causal Link
	Binding Link
	Link (or Arc) Reversal
	Toggle Node List
	Expressions
	Show / Hide Node Locator
	Information
	Initialize
	Update global node and link groups
	Update Monitor Graphs
	Function Tool
	Instance Tool
	Select Tool
	Continuous Chance Tool
	Discrete Chance Tool
	Decision Tool
	Discrete Function Tool
	Change Link Tool
	Link Tool
	Reverse Link Tool
	Utility Tool
	Tables Pane Button
	EM Learning Button
	Adaptation Button
	Case Generator Button
	Toolbar
	Save As
	Save
	Save All
	Save Elimination Order
	Save All Classes in Single File As…
	Copy
	Paste
	Cut
	Delete
	Delete State
	Close
	Close All
	Open
	New
	Exit
	Zooming
	Print
	Print Network
	Print Node Table
	Print Probabilities
	Generate Network HTML Documentation
	Statistics
	Recall Policies
	Store Policies
	Reset uninstantiated policies
	Rename Network
	Show Last Error
	Bug Report
	Report Beliefs

	Network Windows and Menus
	Network Pane
	Network Properties
	Network Window
	Network Attributes
	Network Properties DBN Pane
	Network Menu
	Main Window
	About
	View Menu
	Window Menu
	Wizards Menu
	File Menu
	Help Menu
	Edit Menu
	Options Menu
	Policy Window
	Monitor Windows
	Preferences
	Window List
	HUGIN Web Site
	General Help
	Display
	Groups and Colors

	Nodes and Tables
	Node
	Node Name (Node Identifier)
	Node Label
	Node Properties
	Node Locator
	Node Type
	Node Tab
	Node Attributes
	Node State Generator
	Interface Tab
	Discrete Chance Node
	Continuous Chance Node
	Decision Node
	Instance Node
	Function Node
	Utility Node
	Input Node
	Output Node
	Interface Node
	Discrete Function Node
	Expand Instance Node
	Collapse Instance Node
	Expand Instance Nodes
	Collapse Instance Nodes
	Expand Node List
	Collapse Node List
	Experience Tables
	Fading Tables
	Open Tables
	Utility Table
	Decision Table
	Table Tab
	States Tab
	Add Experience Table to all Chance Nodes
	Add Fading Table to all Discrete Nodes
	Add State
	Copy Table
	Manually Specify Table
	Arrange Tables
	Close Tables
	Tables Pane
	Node Table
	Conditional Probability Table (CPT)
	Absorb Node
	Toggle Private Nodes
	Move Interface Node
	Models
	Node List Pane

	Algorithms
	Adaptation
	Online EM Adaptation
	Propagation
	PC Algorithm
	NPC Algorithm
	Prop Sum Normal
	Prop Max Fast Retract
	Prop Sum Fast Retract
	Prop Max Normal
	Rebane-Pearl Polytree
	Tree Augmented Naive Bayes
	Chow-Liu Tree
	Junction Tree
	Single Policy Update
	Greedy Search-And-Score Structure Learning

	Wizards
	Analysis Wizard
	Learning Wizard
	Adaptation Wizard
	Expression Builder Wizard
	Code Wizard
	EM Learning Wizard
	Hidden Node Analyzer
	Feature Selection Analyzer
	Parameter Sensitivity Wizard

	Methods Of Analysis
	Methods of Analysis
	D-Separation (Operation)
	D-Separation (Theory)
	Requisite Parents
	Requisite Ancestors
	Data Conflict Analysis
	Evidence Sensitivity Analysis
	Evidence Sensitivity Analysis (Decision)
	Utility Sensitivity Analysis
	Value of Information Analysis
	Continuous-Discrete Node Value Transfer Function
	Convolution of Frequency-Impact Distributions
	The Exposure, Occurrence and Impact Loss Model
	Joint Probability Distribution
	Correlation Analysis Dialog
	Distance Analysis Dialog
	Parameter Sensitivity Analysis
	Two Way Parameter Sensitivity

	Bayesian Network
	Bayesian Networks
	Limited Memory Influence Diagram
	Object-Oriented Network
	Conditional Independence and Dependence
	Model Verification
	OOBN EM Learning
	Dynamic Bayesian Network

	Data Manipulation
	EM Learning
	Structure Learning
	Auto Filtering (DBN)
	Auto Prediction (DBN)
	Leave One Out Propagation
	Case Files
	Data Files
	Case Generator
	Data Frame
	Data Sequences in HUGIN
	Data Processing
	Data Classifier Performance
	Data Analysis
	Data Matrix
	Data Frame With Database Connection
	Discretization
	Import Information
	Import Network Description from Tables
	Load Case
	Save Case
	Recently Used Files
	Save in a File without GUI Attributes
	Write as BMP
	Write as PDF
	Write as SVG
	Data Dependences
	Data Acquisition
	Feature Selection
	Nodes Summary
	Prior Knowledge
	EM Learning
	Structural Constraints
	AIC / BIC / LL
	Case Beliefs
	Data Accuracy
	Data Source
	Dependencies
	Sampling
	Application Update
	What is Data Conflict Analysis?
	Structural Uncertainties Help
	Structure Learning Help

	Releases
	Release 6.0 November 2001
	Release 6.1 April 2002
	Release 6.2 January 2003
	Release 6.3 June 2003
	User feedback form

	Release 6.4 March 2004
	HUGIN Graphical User Interface v6.4:
	HUGIN Decision Engine v6.2:

	Release 6.5 December 2005
	Hugin Graphical User Interface v6.5:
	Hugin Decision Engine v6.3:

	Release 6.6 September 2005
	Hugin Graphical User Interface v6.6:
	HUGIN Decision Engine v6.4:

	Release 6.7 June 2006
	HUGIN Graphical User Interface v6.7:
	HUGIN Decision Engine v6.5:

	Release 6.8 April 2007
	HUGIN Graphical User Interface v6.8:
	HUGIN Decision Engine v6.6:

	Release 6.9 November 2007
	HUGIN Decision Engine v6.7:

	Release 7.0 September 2008
	HUGIN Decision Engine v7.0:

	Release 7.1 March 2009
	HUGIN Graphical User Interface v7.1:
	HUGIN Decision Engine v7.1:

	Release 7.2 November 2009
	HUGIN Graphical User Interface v7.2
	HUGIN Decision Engine v7.2

	Release 7.3 March 2010
	HUGIN Graphical User Interface v7.3
	HUGIN Decision Engine v7.3

	Release 7.4 October 2010
	HUGIN Graphical User Interface v7.4
	HUGIN Decision Engine v7.3

	Release 7.5 June 2011
	HUGIN Graphical User Interface v7.5
	HUGIN Decision Engine v7.5

	Release 7.6 February 2012
	HUGIN Graphical User Interface v7.6
	HUGIN Decision Engine v7.6

	Release 7.7 December 2012
	HUGIN Graphical User Interface v7.7
	HUGIN Decision Engine v7.7

	Release 7.8 May 2013
	HUGIN Graphical User Interface v7.8
	HUGIN Decision Engine v7.8

	Release 8.0
	HUGIN Graphical User Interface v8.0
	HUGIN Decision Engine v8.0

	Release 8.1
	HUGIN Graphical User Interface v8.1
	HUGIN Decision Engine v8.1

	Release 8.2
	HUGIN Graphical User Interface v8.2
	HUGIN Decision Engine v8.2

	Release 8.3
	HUGIN Graphical User Interface v8.3
	HUGIN Decision Engine v8.3

	Release 8.4
	HUGIN Graphical User Interface v8.4
	HUGIN Decision Engine v8.4

	Release 8.5
	HUGIN Graphical User Interface v8.5
	HUGIN Decision Engine v8.5

	Release 8.6
	HUGIN Graphical User Interface v8.6
	HUGIN Decision Engine v8.6
	Tools introduced with HUGIN v8.6
	HUGIN QGIS BBN Plugin

	Release 8.7
	HUGIN Graphical User Interface v8.7
	HUGIN Decision Engine v8.7

	Release 8.8
	HUGIN Graphical User Interface v8.8
	HUGIN Decision Engine v8.8

	Release 8.9
	HUGIN Graphical User Interface v8.9
	HUGIN Decision Engine v8.9

	Examples
	HUGIN Examples
	The Oil Wildcatter
	The Stud Farm
	Monty Hall Puzzle

	Modeling Examples
	Introduction
	Asia (the Chest Clinic)
	A simplified poker game
	The Mildew examples
	Competitive Analysis Bayesian Networks
	The Two Dice Variables

	References
	Index

