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The HUGIN Graphical User Interface is an interactive tool enabling you to use the facilities of the HUGIN Decision
Engine. It can help you construct models that can be used in other applications.

The HUGIN Graphical User Interface is also ideal for educational purposes. When introducing the concept of Bayesian
networks to a group of students, they will be very motivated if they can model and test Bayesian networks using an
easy-to-use tool.
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CHAPTER
ONE

INTRODUCTION

1.1 The Origin of HUGIN

During an EU sponsored research project (under the ESPRIT program) on diagnosing neuromuscular diseases, the
Bayesian network MUNIN was constructed. A research group at Aalborg University worked on developing correct and
efficient computation methods for the diagnosis problem. Some results had at that time been obtained by American
researchers, but a very obstinate problem still remained, which prevented Bayesian networks from being used in the
construction of expert systems. The problem was known as the rumour problem: you may hear the same story through
several different channels; but still the story may originate from the same source. Without knowing whether or not your
channels are independent, you cannot combine the statements correctly.

In Bayesian networks, the rumour problem appears when a cause can influence the same event through different paths
in the network.

The problem was solved and general methods were made available to be used in any domain which can be modeled by
a Bayesian network.

The methods were programmed into a general development and runtime system, which was easy to use for anyone
wishing to construct an expert system based on Bayesian networks. The system was called HUGIN. Over the years the
system has been extended in various ways (e.g. (limited-memory) influence diagrams (LIMIDs), continuous variables,
structure learning, adaptation, object-oriented specification of Bayesian networks and LIMIDs, etc).

1.2 Basic Concepts

Before you can use the HUGIN Graphical User Interface , you should at least understand the concept of Bayesian
Network (page 19) which is described in the Tutorials (page 15) section. This section also contains a step-by-step
description of how to construct a Bayesian network (page 26) using the HUGIN Graphical User Interface.

The extension of Bayesian networks with decision and utility nodes, known as influence diagrams, allows you to model
decision scenarios explicitly. If you are not familiar with (limited-memory) influence diagrams (LIMIDs (page 37)),
you can also learn about these in the Turorials (page 15) section. There is also a step-by-step description of how to
construct a LIMID (page 45) using the HUGIN Graphical User Interface.

Also, you can learn about the concept of object-oriented networks (page 51), which provides a very powerful mecha-
nism for constructing models with repetitive patterns and for constructing models in a hierarchical fashion (top-down,
bottom-up, or a mix of the two), making large models much more readable. Again, there is a step-by-step description
of how to construct an object-oriented network (page 56),using the HUGIN Graphical User Interface.
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1.3 The HUGIN Development Environment

The HUGIN Graphical User Interface is a component of the HUGIN Development Environment (page 5). The two other
main components are the HUGIN Decision Engine (page 5) and the HUGIN Application Program Interface (page 6).
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CHAPTER
TWO

THE HUGIN DEVELOPMENT ENVIRONMENT

The HUGIN Development Environment provides a set of tools for constructing model-based decision support systems
in domains characterized by inherent uncertainty. The models supported are Bayesian networks (BNs) and their ex-
tension (limited-memory) influence diagrams (LIMIDs). The HUGIN Development Environment allows you to define
both discrete domain variables and to some extent continuous domain variables in your models.

You have the opportunity to use the HUGIN Decision Engine (HDE) through the HUGIN Graphical User Interface —
an easy-to-use graphical environment. You can also use the HDE through one of several APIs (Application Program
Interfaces) which come as libraries for C, C++, .NET and Java, and as an ActiveX server. More information about the
versions of the HUGIN Development Environment that are available can be found in the Versions (page 11) section.

The HUGIN Development Environment can be used to construct models as components in applications for decision
support, data mining, and expert systems. The application communicates with the constructed component models
through one of the HUGIN APIs (page 5).

2.1 Components of the HUGIN Development Environment

The HUGIN Development Environment has three main components: The HUGIN Decision Engine, a collection of
Application Program Interfaces, and the HUGIN Graphical User Interface.

2.1.1 The HUGIN Decision Engine

The HUGIN Decision Engine (HDE) performs reasoning on a knowledge base represented as a Bayesian network or
LIMID. The HDE performs all data processing and storage maintenance associated with the reasoning process. An
important part of the HDE is the compiler, which transforms networks into efficient structures (known as junction
trees), making possible to perform inference (reasoning) in the networks very efficiently. For small and medium sized
networks, inference takes fractions of a second, and even for large networks it most often takes only a few seconds.

The HDE can be accessed through HUGIN Graphical User Interface, or it can be accessed from application programs
using one of the HUGIN Application Program Interfaces.
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2.1.2 Application Program Interfaces

The HUGIN APIs (Application Program Interfaces) allow programmers can build knowledge-based applications, uti-
lizing the power of the HUGIN Decision Engine for reasoning. When used through one of the HUGIN APIs, the
HUGIN Decision Engine functions as an ordinary program library, giving the application programmer total control of
events.

The HUGIN APIs are currently available as C, C++, .NET/.Net Core, Java, Python, Web Service API and Visual Basic
on Windows via a COM interface.

You can download the HUGIN API reference manuals from the HUGIN web site.
HUGIN also offers APIs for Android and IOS. Please contact HUGIN at hugin @info.dk for more information.

2.1.3 The HUGIN Graphical User Interface

The HUGIN Graphical User Interface is used to create and maintain network models as well as executing them (en-
tering evidence and displaying resulting probability distributions and expected utilities). The HUGIN Graphical User
Interface can operate in two different modes: Edit Mode and Run Mode. In Edit Mode, nodes can be created and linked,
states and actions can be specified, and conditional probability tables and utility tables can be entered using a window-,
menu- and mouse driven interface. In Run Mode, beliefs and utilities for individual nodes can be displayed. The user
can enter evidence incrementally by selecting states/actions of individual nodes. The HUGIN Decision Engine can
then be engaged, propagating the information to obtain revised probabilities and expected utilities.

2.1.4 Extra Features

For extra performance gains, the HUGIN Decision Engine and compiler features a facility for compressing sparse
probability tables. This can save considerable space and likewise considerably increase performance. The compiler and
inference engine also features an option for approximating the probability tables to increase their scarcity. Combined
with the compression, this can have dramatic effects on performance, with negligible effects on end results.

2.2 Bayesian Network Technology in the HUGIN Development Envi-
ronment

This text provides you with an overview of Bayesian networks, LIMID models, and networks with conditional Gaussian
variables (also known as Bayesian networks). More detailed information on these and other issues can be found in
specialized sections and rutorials (page 15)

Probabilistic graphical models (of which Bayesian networks and LIMIDs are excellent examples) are especially suitable
for domains with inherent uncertainty. Domain models based on Bayesian network technology can be built using the
HUGIN Graphical User Interface, an easy-to-use graphical user interface built on top of the Java API provided with the
HUGIN Developer package. Stand-alone applications using network technology can be built using the HUGIN APIs
(page 5), a series of C, C++, and Java libraries and an ActiveX server providing access to the facilities of the HUGIN
Decision Engine (HDE) for the application programmer.

Bayesian Networks

Bayesian networks are often used to model domains that are characterized by inherent uncertainty. (This uncertainty
can be due to imperfect understanding of the domain, incomplete knowledge of the state of the domain at the time where
a given task is to be performed, randomness in the mechanisms governing the behavior of the domain, or a combination
of these.)

Formally, a Bayesian network can be defined as follows:
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Definition (Bayesian Network) A Bayesian network is a directed acyclic graph with the following properties:
» Each node represents a random variable.

* Each node representing a variable A with parent nodes representing variables B, B2,,..., B, is assigned a
conditional probability table (CPT):

P(A|B17 BQ; 7Bn)

The nodes represent random variables, and the edges represent probabilistic dependences between variables. These
dependences are quantified through a set of conditional probability tables (CPTs): Each variable is assigned a CPT of
the variable given its parents. For variables without parents, this is an unconditional (also called a marginal) distribution.

Example 1

Wisit to Asia?

Tuberculosis? Lung cancer? Bronchitis?

Tuberculosis or cancer?

Positive X-ray? Dyspnoea’?

Figure 1: Graph representing structural aspects of medical knowledge concerning lung diseases.

Figure 1 shows a model for the following piece of fictitious medical knowledge:

“Shortness-of-breath (dyspnoea) [d] may be due to tuberculosis [t], lung cancer [1] or bronchitis [b], or none of them,
or more than one of them. A recent visit to Asia [a] increases the risk of tuberculosis, while smoking [s] is known to
be a risk factor for both lung cancer and bronchitis. The result of a single chest X-ray [x] does not discriminate
between lung cancer and tuberculosis, neither does the presence or absence of dyspnoea” (Lauritzen & Spiegelhalter
1988) (page 541).

The last fact is represented in the graph by the intermediate variable e. This variable is a logical-or of its two parents
(t and 1); it summarizes the presence of one or both diseases or the absence of both.

An important concept for Bayesian networks is conditional independence. Two sets of variables, A and B, are said to be
(conditionally) independent given a third set C of variables if when the values of the variables C are known, knowledge
about the values of the variables B provides no further information about the values of the variables A:

P(A|B,C) = P(A|C)

Conditional independence can be directly read from the graph as follows: Let A, B, and C be disjoint sets of variables,
then

* identify the smallest sub-graph that contains A B C and their ancestors;
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¢ add undirected edges between nodes having a common child;
drop directions on all directed edges.

Now, if every path from a variable in A to a variable in B contains a variable in C, then A is conditionally independent
of B given C (Lauritzen et al. 1990) (page 541).

Example 2

If we learn the fact that a patient is a smoker, we will adjust our beliefs (increased risks) regarding lung cancer and
bronchitis. However, our beliefs regarding tuberculosis are unchanged (i.e., t is conditionally independent of s given
the empty set of variables). Now, suppose we get a positive X-ray result for the patient. This will affect our beliefs
regarding tuberculosis and lung cancer, but not our beliefs regarding bronchitis (i.e., b is conditionally independent of
x given s). However, had we also known that the patient suffers from shortness-of-breath, the X-ray result would also
have affected our beliefs regarding bronchitis (i.e., b is not conditionally independent of x given s and d).

These (in)dependences can all be read from the graph of Figure 1 using the method described above.

Another, equivalent and very popular criterion for reading statements of conditional independence is d-separation
(page 289) (Pearl 1988) (page 541).

2.2.1 Inference

Inference in a Bayesian network means computing the conditional probability for some variables given information
(evidence) on other variables. This is easy when all available evidence is on variables that are ancestors of the variable(s)
of interest. But when evidence is available on a descendant of the variable(s) of interest, we have to perform inference
opposite the direction of the edges. To this end, we employ Bayes’ Theorem:

P(A|B)P(A)

PAIB) = =5

HUGIN inference is essentially a clever application of Bayes’ Theorem; details can be found in the paper by Jensen et
al. (1990(1)) (page 541).

2.2.2 Limited Memory Influence Diagrams

A LIMID is a Bayesian network augmented with decision and utility nodes (the random variables of a LIMID diagram
are often called chance variables). Edges into decision nodes indicate time precedence: an edge from a random variable
to a decision variable indicates that the value of the random variable is known when the decision will be taken, and an
edge from one decision variable to another indicates the chronological ordering of the corresponding decisions. The
network must be acyclic.

We are interested in making the best possible decisions for our application. We therefore associate utilities with the
state configurations of the network. These utilities are represented by utility nodes. Each utility node has a utility
function that to each configuration of states of its parents associates a utility. (Utility nodes do not have children). By
making decisions, we influence the probabilities of the configurations of the network. We can therefore compute the
expected utility of each decision alternative (the global utility function is the sum of all the local utility functions). We
shall choose the alternative with the highest expected utility; this is known as the maximum expected utility principle.

When we have observed the values of the variables that are parents of the first decision node in the LIMID, we want to
know the maximum expected utilities for the alternatives of this decision. The HUGIN Decision Engine will compute
these utilities on the assumption that all future decisions will be made in an optimal manner (using all available evidence
at the time of each decision). Similar considerations also apply to the remaining decisions.

The computational method underlying the implementation of LIMIDs in the HUGIN Decision Engine is described by
S. L. Lauritzen and D. Nilsson (2001) (page 541).

Example 3
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1 o @>

: 4

Figure 2: LIMID model for the oil wildcatters decision problem: T represents the decision whether or not to test; D
represents the decision whether to drill or not to drill; S represents the outcome of the seismic soundings test (if the
oil wildcatter decides to test); H represents the state of the hole; C represents the cost associated with the seismic
soundings test; and P represents the expected payoff associated with drilling.

An oil wildcatter must decide whether or not to drill. He is uncertain whether the hole is dry, wet, or soaking. At a
cost of $10,000, the oil wildcatter could take seismic soundings which will help determine the underlying geological
structure at the site. The soundings will disclose whether the terrain below has closed structure (good), open structure
(s0-s0), or no structure (bad).

The cost of drilling is $70,000. If the oil wildcatter decides to drill, the expected payoff (i.e., the value of the oil found
minus the cost of drilling) is $-70,000 if the hole is dry, $50,000 if the hole is wet, and $200,000 if the hole is soaking;
if the oil wildcatter decides not to drill, the payoff is (of course) $0.

The experts have estimated the following probability distribution for the state of the hole: P(dry)=0.5, P(wet)=0.3, and
P(soaking)=0.2. Moreover, the seismic soundings test is not perfect; the conditional probabilities for the outcomes of
the test given the state of the hole are:

dry | wet | soaking
closed structure 0.1 | 0.3 | 0.5
open structure 0.2 (04 |04
no structure 0.6 (0.3 | 01

Figure 3: CPT for the outcomes of the test

Figure 2 shows LIMID model for the oil wildcatters decision problem. Random variables are depicted as circles,
decision variables are depicted as squares, and utilities are depicted as diamonds.

On the basis of this LIMID, the HUGIN Decision Engine computes the utility associated with testing to be $22,500
and the utility associated with not testing to be $20,000. So the optimal strategy is to perform the seismic soundings
test, and then decide whether to drill or not to drill based on the outcome of the test.

[This example is due to Raiffa (1968) (page 541). A more thorough description of this example is found in the Examples
(page 517) section.]
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2.2.3 Networks with Conditional Gaussian Variables

The HUGIN Decision Engine is able to handle networks with both discrete and continuous random variables. The
continuous random variables must have a Gaussian (also known as a normal) distribution conditional on the values of
the parents.

The distribution for a continuous variable Y with discrete parents I and continuous parents Z is a (one-dimensional)
Gaussian distribution conditional on the values of the parents:

P(Y|I =i,Z = z) = N(a()) + () 1,7())

Note that the mean depends linearly on the continuous parent variables and that the variance does not depend on the
continuous parent variables. However, both the linear function and the variance are allowed to depend on the discrete
parent variables. These restrictions ensure that exact inference is possible.

Note that discrete variables cannot have continuous parents.
Example 4
Figure 3 shows a network model for a waste incinerator (Lauritzen 1992) (page 541):

“The emissions (of dust and heavy metals) from a waste incinerator differ because of compositional differences in
incoming waste [W]. Another important factor is the waste burning regimen [B], which can be monitored by
measuring the concentration of CO2 in the emissions [C]. The filter efficiency [E] depends on the technical state [F]
of the electrofilter and on the amount and composition of waste [W]. The emission of heavy metals [M:sub: o ']
depends on both the concentration of metals [M:sub: i '] in the incoming waste and the emission of dust particulates
[D] in general. The emission of dust [D] is monitored through measuring the penetrability of light [L].”

) O
s
ina

Figure 3: The structural aspects of the waste incinerator model: B, F, and W are discrete variables, while the remaining
variables are continuous.

The result of inference within a network model containing conditional Gaussian variables is - as always - the beliefs (i.e.,
marginal distributions) of the individual variables given evidence. For a discrete variable this amounts to a probability
distribution over the states of the variable. For a conditional Gaussian variable two measures are provided:

1. the mean and variance of the distribution;

2. since the distribution is in general not a simple Gaussian distribution, but a mixture (i.e., a weighted sum) of
Gaussians, a list of the parameters (weight, mean, and variance) for each of the Gaussians is available.
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Example 5

From the network shown in Figure 3 (and given that the discrete variables B, F, and W are all binary), we see that
* the distribution for C can be comprised of up to two Gaussians (one if B is instantiated);
* initially (i.e., with no evidence incorporated), the distribution for E is comprised of up to four Gaussians;

* if L is instantiated (and none of B, F, or W is instantiated), then the distribution for E is comprised of up to eight
Gaussians.

2.3 Versions

There are various configurations' of the HUGIN Development Environment. Overall they can be divided into two cate-
gories: Commercial and Academic Licences. Furthermore, a popular free evaluation version with limited functionality
can be downloaded from our web site and an OEM version can be achieved for deployment in production setups.

2.3.1 Commercial Versions

For Commercial users, two versions of the HUGIN Development Environment are available: HUGIN ExplorerTMz,
and HUGIN Developer™?. HUGIN Explorer comprises HUGIN Graphical User Interface that is an interactive Java-
based tool built on top of the HUGIN Java API, and thus enables you to use the facilities of the HDE for constructing,
manipulating, and evaluating models that can be used in other applications. HUGIN Developer™ comprises HUGIN
Graphical User Interface and one of the available Hugin APIs, and it is intended for developers using the HUGIN
Decision Engine (HDE) as part of custom-built applications. It provides access to all functions of the Decision Engine
through an API. HUGIN Explorer™ and HUGIN Developer both allow construction of Bayesian networks of any size,
limited only by the amount of virtual memory available. Neither version has limitations on the number of nodes or the
number of states of the nodes.

2.3.2 Academic Versions

The following two versions of the HUGIN Development Environment are targeting academic users: HUGIN Educa-
tional™*, and HUGIN Researcher™?, HUGIN Educational ™ is targeting employees or students at an academic facility
who wish to learn about and utilize Bayesian network technology. It comprises HUGIN Graphical User Interface that
is an interactive Java-based tool built on top of the HUGIN Java API, and thus enables students and researchers to use
the facilities of the HDE for constructing, manipulating, and evaluating models that can be used in other applications.
HUGIN Researcher™ is targeting employees or students at an academic facility who using Bayesian network technol-
ogy to build advanced applications for research purposes to be used for academic purposes. It comprises the HUGIN
Graphical User Interface and the HUGIN APIs, and it is intended for students and researchers using the HUGIN Deci-
sion Engine (HDE) as part of their academic work. It provides access to all functions of the Decision Engine through
an API. HUGIN Educational™ and HUGIN Researcher™ both allow construction of Bayesian networks of any size,
limited only by the amount of virtual memory available. Neither version has limitations on the number of nodes or the
number of states of the nodes.

! https://www.hugin.com/index.php/products/

2 https://www.hugin.com/index php/hugin-explorerhugin-educational//
3 https://www.hugin.com/index.php/hugin-developerhugin-researcher/
4 https://www.hugin.com/index.php/hugin-explorerhugin-educational/
5 https://www.hugin.com/index php/hugin-developerhugin-researcher/
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2.3.3 Free Evaluation Version

HUGIN Lite™ is a free version free version® of HUGIN Developer™ for people who do not trust sales literature.
HUGIN Lite™ contains all the basic functionality of HUGIN Developer™, except for loading, construction, and saving
of models with more than 50 states, and a restriction to 500 cases when learning. HUGIN Lite™ is intended to give an
idea of the possibilities and facilities in HUGIN Developer™ and HUGIN Researcher™.

2.3.4 Deployment Licences

For clients who want to incorporate HUGIN technology into products or services an OEM agreement’ can be made
allowing the client to deploy the HUGIN APIs (page 5) in production environments.

2.3.5 Special HUGIN API Versions

The HUGIN Decision Engine is highly portable. This means that versions of the HUGIN API can be produced for
many types of machines and operating systems. If you have special requirements, or special machines you would like
to see supported, please contact HUGIN Expert A/S at info@hugin.com. If possible, we will be happy to produce
special HUGIN API versions on request.

2.4 System Requirements

To use the HUGIN Development Environment (if not a special version - see the Versions section (page 11)) you need:
¢ Windows: Microsoft Windows 7/8/10 (x86/x64)

e Linux: Red Hat Enterprise Linux 7, Ubuntu 18.04 LTS, Ubuntu 22.04 LTS (x64), and compatible distributions
(x86/x64)

* macOS: macOS Monterey, macOS Ventura

The Java API and the Graphical User Interface requires Oracle’s JVM to run. On macOS, Oracle’s JVM is only available
in 64 bit.

2.4.1 Memory Requirements

The complexity (both in terms of space and time) of making inference in a Bayesian network or a LIMID model can
be quite large. For most applications, however, the complexity is moderate.

The time and memory required for making inference depends on the number of variables, the number of states of the
variables, and the structure of the network. Among these three factors, it is the structure of the network that is the
most important. As an example, an early version of the TREAT network (a decision support system for treatment of
severe bacterial infections) developed at Aalborg University contains more than 1400 variables, but still requires less
than 2 Mbytes of memory (using optimal triangulation). On the other hand, one can easily construct networks with less
than 50 variables where the complexity of inference gets prohibitive. Note that by using the compression (page 125)
and approximation (page 125) facilities of the HUGIN compiler, memory requirements can be vastly reduced. Also,
using the optimal triangulation feature (page 126) when compiling a network can be very useful in minimizing the
complexity of inference.

Please note that the memory requirements mentioned above assume that we are using the standard single-precision
HUGIN API. (Using the double-precision version will double that amount.) If we are using the HUGIN Graphical

6 https://www.hugin.com/index.php/hugin-lite/
7 https://www.hugin.com/index php/hugin-oem/
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User Interface, there will also be a memory overhead from running Java and representing the variables as Java objects,
etc.

In most cases, when our customers experience problems with lack of memory, the problems were caused by inappro-
priate structures in the models which could be solved by optimizing the representation.

See the section on junction trees (page 254) for a more detailed discussion of how inference is performed and what
causes the potential high complexity.

2.4.2 Application Programming Interfaces

Application Programming Interfaces (APIs) for the HUGIN Decision Engine (HDE) are provided for the C, C++, Java,
Python, and C# (NET Core 2.0) programming languages for all supported platforms (Windows, Linux, and macOS).
Additionally, a web service API is provided for all supported platforms.

For the Microsoft Windows platform, APIs for C# (.NET Framework 2.0 and 4.0) and Excel (COM) are also provided.
For macOS and iOS, library frameworks for the Swift programming language are provided.

For the Microsoft Windows platform, DLLSs for C/C++ are provided for use with Visual Studio 6.0, Visual Studio .NET
2003, Visual Studio 2005, Visual Studio 2008, Visual Studio 2010, Visual Studio 2012, Visual Studio 2013, Visual
Studio 2015, Visual Studio 2017, and Visual Studio 2019.

For the Linux platform, two software packages are available: One compiled on Red Hat Enterprise Linux 7 (RHEL7),
and one compiled on Ubuntu 18.04 LTS (64-bit only). Most Linux software distributions should be compatible with at
least one of these packages. If you experience problems, please contact HUGIN Expert A/S.

The packages have been compiled using the default system compiler. For RHEL?7, this is gcc/g++ 4.8.5, and for Ubuntu
18.04 LTS, this is gcc/g++ 7.4.0. The APIs may not work with other compilers (including the version of the compiler).
This is most likely to be the case for the HUGIN C++ APIL

For macOS/iOS, all libraries have been compiled using Xcode 10.3.

The HUGIN Java API is compatible with Java 1.4.2 and newer versions from Oracle.
The HUGIN Web Service API requires Java 8 or newer on the server.

The HUGIN Python API works with Python 2.7 and Python 3.x.

If you have special requirements (e.g., operating systems, compilers, or hardware) you would like to see supported,
please contact HUGIN Expert A/S. If possible, we will be happy to produce special HUGIN API versions on request.

Upon taking any version of the HUGIN software into use, you automatically agree to the terms of the HUGIN Software
License Agreement (below).

2.5 HUGIN Software License Agreement

HUGIN Expert A/S, hereinafter called “HUGIN”, and the organization/institution specified in the order form, here-
inafter called “LICENSEE”, agree that the following terms and conditions will apply to the use of the computer software
product specified in the order form, hereinafter called “HUGIN SOFTWARE”, a copy of which is being supplied by
HUGIN to LICENSEE.

1. Grant. HUGIN provides HUGIN SOFTWARE to LICENSEE and grants to LICENSEE a non-exclusive and non-
transferable right to use this software. No license, right or interest in any trademark, trade name or service mark of
HUGIN SOFTWARE or any third party from whom HUGIN SOFTWARE has acquired such license rights are granted
under this License. HUGIN SOFTWARE should be used by the LICENSEE only on a computer system owned, leased or
operated by the LICENSEE. The maximum number of simultaneous users for HUGIN SOFTWARE shall be as specified
in the order form.
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2. Term. This Agreement shall become effective upon its acceptance by the authorized representatives of HUGIN and
LICENSEE. The Agreement shall remain in effect in perpetuity, except that HUGIN may discontinue the license or
terminate the Agreement if LICENSEE fails to comply with any terms or conditions thereof.

3. Charges. Within thirty (30) days of the effective date of this Agreement, LICENSEE shall pay HUGIN the charge
specified in HUGIN'’s current Price Schedule. LICENSEE shall also pay sales taxes if applicable.

4. Restricted Use. LICENSEE agrees to maintain HUGIN SOFTWARE source code and object code in confidence
and will not make HUGIN SOFTWARE or any derivative thereof available for any use whatsoever in any form to any
other individual or firm. LICENSEE agrees to take appropriate action by instruction, agreement or otherwise with
all persons permitted access to HUGIN SOFTWARE or any derivative thereof to satisfy LICENSEE’s protection and
security obligations under this Agreement. LICENSEE may take additional copies, in whole or in part, of HUGIN
SOFTWARE as necessary and incidental to its use in compliance with this Agreement, such as for archival and back-
up purposes, provided that each such copy, in whole or in part, shall remain subject to all terms of this Agreement.
LICENSEE shall not disassemble or decompile the HUGIN SOFTWARE.

5. Non-Assignment. Under no circumstances shall this Agreement or any of the rights granted to LICENSEE hereunder
be sold, assigned or sub-licensed, voluntarily or by operation by law, to any other person or entity, and any such
purported sale, assignment or sub-license shall be void. The API that ships together with the HUGIN SOFTWARE has
a tight link to the installation of these packages. It’s not possible to use the API’s on another computer unless the whole
package is installed. To be able to distribute applications using the HUGIN API a HUGIN OEM License is imperative.
Please contact HUGIN Expert A/S for further information on the HUGIN OEM license.

6. Warranty. HUGIN SOFTWARE is provided without warranty of any kind, either expressed or implied, including
without limitation implied warranties or merchantability and fitness for a particular purpose. HUGIN disclaims any
responsibility for ease of installation, accuracy, completeness or correctness of HUGIN SOFTWARE. HUGIN does not
warrant that HUGIN SOFTWARE will meet LICENSEE’s requirements or that operations involving HUGIN SOFT-
WARE will be uninterrupted or error free.

7. Applicable Law. This Agreement shall be governed by, subject to and interpreted in accordance with Danish law,
and LICENSEE and HUGIN shall submit to the jurisdiction of the Danish court.
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CHAPTER
THREE

TUTORIALS

A number of tutorials are provided to help you getting acquainted with the HUGIN technology and with the HUGIN
Graphical User Interface. There is one section of tutorials that introduce some basic concepts, and another that presents
some more advanced features of the HUGIN Graphical User Interface.

3.1 Basic Concepts

e The Paradigms Tutorial (page 16) presents the three main paradigms for expert systems: Rule-based systems,
Neural networks, and Bayesian networks.

e The Bayesian Networks Tutorial (page 19) describes the basic properties of Bayesian networks, and is recom-
mended if you have no or little prior knowledge about Bayesian networks.

* The How to Build BNs Tutorial (page 26) provides a step-by-step guide to constructing a Bayesian network using
the HUGIN Graphical User Interface.

* The Limited Memory Influence Diagrams Tutorial (page 37) describes the basic properties of limited memory
influence diagrams, and is recommended if you have no or little prior knowledge about limited memory influence
diagrams (LIMIDs).

e The How to Build LIMIDs Tutorial (page 45) provides a step-by-step guide to constructing a LIMID using the
HUGIN Graphical User Interface.

e The Object Orientation Tutorial (page 51) describes the basic properties of object-oriented Bayesian networks
and LIMIDs, and is recommended if you have no or little prior knowledge about this subject.

e The How to Build OOBNs Tutorial (page 56) provides a step-by-step guide to constructing an object-oriented
Bayesian network using the HUGIN Graphical User Interface.

3.2 Learning More

* The Node Table Tutorial (page 63) explains the functionalities of node tables.

e The Table Generator Tutorial (page 73) shows how to specify simple expressions for large tables and then let the
built-in table generator do all the hard work of filling in the numbers of the table.

» The Case and Data File Formats Tutorial (page 85) describes how data for learning may be specified as case and
data files.

* The Structure Learning Tutorial (page 97) describes how Bayesian networks can be constructed automatically
from data.

* The EM Learning Tutorial (page 105) describes how the probabilities (parameters) of Bayesian networks can be
learned automatically from data.
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* The Adaptation Tutorial (page 111) explains how the probabilities specified for Bayesian networks can be au-
tomatically updated from experience (i.e., evidence) such that, for example, the networks adapt to changing
conditions its environment.

e The Case Generator Tutorial (page 86) explains how to generate simulated cases from a Bayesian network.

3.2.1 Paradigms of Expert Systems

Section author: By Finn V. Jensen, Dept. of Computer Science, Aalborg University, Denmark

This is a brief overview of the three main paradigms of expert systems.

Rule-Based Systems

A rule is an expression of the form
if A then B

where A is an assertion and B can be either an action or another assertion. For instance, the following three rules could
be part of a larger set of rules for troubleshooting water pumps:

1. If pump failure then the pressure is low
2. If pump failure then check oil level
3. If power failure then pump failure

A rule-based system consists of a library of such rules. These rules reflect essential relationships within the domain,
or rather: they reflect ways to reason about the domain.

When specific information about the domain becomes available, the rules are used to draw conclusions and to point
out appropriate actions. This is called inference. The inference takes place as a kind of chain reaction. In the above
example, if you are told that there is a power failure, Rule 3 will state that there is a pump failure and Rule 1 will then
tell us that the pressure is low. Rule 2 will also give a (useless) recommendation to check the oil level.

Rules can also be used in the opposite direction. Suppose you are told that the pressure is low; then Rule 1 states that it
can be due to a pump failure, while Rule 3 states that a pump failure can be caused by a power failure. You should also
be able to use Rule 2 to recommend checking the oil level, but it is very difficult to control such a mixture of inference
back an forth in the same session.

Uncertainty

Often the connections reflected by the rules are not absolutely certain, and also the gathered information is often subject
to uncertainty. In such cases, a certainty measure is added to the premises as well as to the conclusions in the rules of
the system. Now, a rule gives a function that describes how much a change in the certainty of the premise will change
the certainty of the conclusion. In its simplest form, this looks like:

4. If A (with certainty x) then B (with certainty f{x))

There are many schemes for treating uncertainty in rule-based systems. The most common are fuzzy logic, certainty
factors, and (adapted versions of) Dempster-Shafer belief functions. Common to all of these schemes is that uncertainty
is treated locally. That is, the treatment is connected directly to the incoming rules and the uncertainty of their elements.
Imagine, for example, that in addition to Rule 4 we have the rule

5. If C (with certainty x) then B (with certainty g(x))
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If we now get the information that A holds with certainty a and C holds with certainty ¢, what is then the certainty of
B?

There are different algebras for such a combination of uncertainties, depending on the scheme. Common to all these
algebras is that in many cases they come to incorrect conclusions. This is because the combination of uncertainty is
not a local phenomenon, but it is strongly dependent on the entire situation (in principle a global matter).

Neural Networks

(Only the so-called feed-forward networks are treated.)

A neural network consists of several layers of nodes: At the top there is a layer of input nodes, at the bottom a layer
of output nodes, and in between these normally 1 or 2 hidden layers. Except for the output nodes, all nodes in a layer
are in principle connected to all nodes in the layer immediately below. A node along with its in-going edges is called
a perceptron.

A neural network performs pattern recognition. You could for instance imagine a neural network that reads handwritten
letters. By automatic tracking, a handwritten letter can be transformed into a set of findings on curves (not a job for
the network). The network will have an input node for every possible kind of finding and an output node for each
letter in the alphabet. When a set of findings is fed into the network, the system will match the pattern of findings with
equivalent patterns of the different letters.

Technically, the input nodes are given a value (0 or 1). This value is transmitted to the nodes in the next layer. Each
of these nodes perform a weighted sum of the incoming values, and if this sum is greater than a certain threshold, the
node fires downward with the value 1. The values of the output nodes determine the letter.

So, apart from the architecture of the network (the number of layers and the number of nodes in each layer), the weights
and the thresholds determine the behavior of the network. Weights and thresholds are set in order for the network to
perform as well as possible. This is achieved by training: You have a large number of examples where both input values
and output values are known. These are then fed into the training algorithm of the network. This algorithm determines
weights and thresholds in such a way that the distance between the set of outputs from the network and the desired sets
of outputs from the examples gets as small as possible.

There is nothing preventing the use of neural networks for domains requiring the handling of uncertainty. If relations
are uncertain (for example in medical diagnosis), a neural network with the proper training will be able to give the most
probable diagnosis given a set of symptoms. However, you will not be able to read the uncertainty of the conclusion
from the network, you will not be able to get the next-most probable diagnosis and - probably the most severe set-back
- you will not know under which assumptions about the domain the suggested diagnosis is the most probable.

Bayesian Networks
Bayesian networks are also called Bayes nets, causal probabilistic networks (CPNs), Bayesian belief networks (BNs),
or belief networks.

A Bayesian network consists of a set of nodes and a set of directed edges between these nodes. Edges reflect cause-
effect relations within the domain. These effects are normally not completely deterministic (e.g. disease -> symptom).
The strength of an effect is modeled as a probability:

6. If tonsillitis then P(temp>37.9) = 0.75
7. If whooping cough then P(temp>37.9) = 0.65
One could be led to read these statements as rules. They shouldn’t. So, a different notation is used:
P(temp>37.9 | whooping cough) = 0.65

If 6. and 7. are read as ‘If otherwise healthy and..then..’, there also needs to be a specification of how the two causes
combine. That is, we need the probability of having a fever if both symptoms are present and if the patient is completely
healthy. All in all you have to specity the conditional probabilities:
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P(temp>37.9 | whooping cough, tonsillitis),

Where ‘whooping cough’ and ‘tonsillitis’ each can take the states ‘yes’ and ‘no’. So, you must for any node specify the
strength of all combinations of states for the possible causes.

Fundamentally, Bayesian networks are used to update probabilities whenever information becomes available. The
mathematical basis for this is Bayes’ theorem:

P(A | B) P(B) = P(B | A) P(A)

Contrary to the methods of rule-based systems, the updating method of Bayesian networks uses a global perspective,
and if model and information are correct, it can be proved that the method computes the updated probabilities correctly
(correctly regarding the axioms of the classical probability theory).

Any node in the network can receive information as the method doesn’t distinguish between inference in or opposite
to the direction of the edges. Also, simultaneous input of information into several nodes will not affect the updating
algorithm.

An essential difference between rule-based systems and systems based on Bayesian networks is that in rule based
systems you try to model the expert’s way of reasoning (hence the name expert systems), while with Bayesian networks
you try to model dependences in the domain itself. Systems of the latter type are often called decision support systems
or normative expert systems.

Comparing Neural Networks and Bayesian Networks

The fundamental difference between the two types of networks is that a perceptron in the hidden layers does not in itself
have an interpretation in the domain of the system, whereas all the nodes of a Bayesian network represent concepts that
are well defined with respect to the domain.

The meaning of a node and its probability table can be subject to discussion, regardless of their function in the network.
But it does not make any sense to discuss the meaning of the nodes and the weights in a neural network. Perceptrons
in the hidden layers only have a meaning in the context of the functionality of the network.

This means that the construction of a Bayesian network requires detailed knowledge of the domain in question. If such
knowledge can only be obtained through a series of examples (i.e., a data base of cases), neural networks seem to be
an easier approach. This might be true in cases such as the reading of handwritten letters, face recognition, and other
areas where the activity is a ‘craftsman like’ skill based solely on experience.

It is often criticized that in order to construct a Bayesian network you have to ‘know’ too many probabilities. However,
there is not a considerable difference between this number and the number of weights and thresholds that have to be
‘known’ in order to build a neural network, and these can only be learnt by training. It is an enormous weakness of
neural networks that you are unable to utilize the knowledge you might have in advance.

Probabilities, on the other hand, can be assessed using a combination of theoretical insight, empiric studies independent
of the constructed system, training, and various more or less subjective estimates.

Finally, it should be mentioned that in the construction of a neural network the route of inference is fixed. It is decided
in advance, about which relations information is gathered, and which relations the system is expected to compute.
Bayesian networks are much more flexible in that respect.

18 © Copyright 2022, HUGIN EXPERT A/S



HUGIN Graphical User Interface Documentation, Release 9.3

3.2.2 Introduction to Bayesian Network

A Bayesian network (BN) is used to model a domain containing uncertainty in some manner. This uncertainty can be
due to imperfect understanding of the domain, incomplete knowledge of the state of the domain at the time where a
given task is to be performed, randomness in the mechanisms governing the behavior of the domain, or a combination
of these.

Bayesian networks are also called belief networks and Bayesian belief networks. Previously, the term causal probabilis-
tic networks has also been used. A BN is a network of nodes connected by directed links with a probability function
attached to each node. The network (or graph) of a BN is a directed acyclic graph (DAG), i.e., there is no directed path
starting and ending at the same node.

A node represents either a discrete random variable with a finite number of states or a continuous (Gaussian distributed)
random variable. Throughout this document, the terms “variable” and “node” are used interchangeably. The links
between the nodes represent (causal) relationships between the nodes.

If anode doesn’t have any parents (i.e., no links pointing towards it), the node will contain a marginal probability table.
If the node is discrete, it contains a probability distribution over the states of the variable that it represents. If the node
is continuous, it contains a Gaussian density function (given through mean and variance parameters) for the random
variable it represents.

If a node do have parents (i.e., one or more links pointing towards it), the node contains a conditional probability table
(CPT). If the node is discrete, each cell in the CPT (or, in more general terms, the conditional probability function (CPF))
of a node contains a conditional probability for the node being in a specific state given a specific configuration of the
states of its parents. Thus, the number of cells in a CPT for a discrete node equals the product of the number of possible
states for the node and the product of the number of possible states for the parent nodes. If the node is continuous, the
CPT contains a mean and a variance parameter for each configuration of the states of its discrete parents (one if there
are no discrete parents) and a regression coefficient for each continuous parent for each configuration of the states of
the discrete parents.

The following example tries to make all this more concrete.

The Apple Tree Example

The problem domain of this example is a small orchard belonging to Jack Fletcher (let’s call him Apple Jack). One day
Apple Jack discovers that his finest apple tree is losing its leaves. Now, he wants to know why this is happening. He
knows that if the tree is dry (caused by a drought) there is no mystery - it is very common for trees to lose their leaves
during a drought. On the other hand the losing of leaves can be an indication of a disease.

The situation can be modeled by the BN in Figure 1. The BN consists of three nodes: Sick, Dry, and Loses which can
all be in one of two states: Sick can be either “sick” or “not” - Dry can be either “dry” or “not” - and Loses can be either
“yes” or “no”. The node Sick tells us that the apple tree is sick by being in state “sick”. Otherwise, it will be in state
“not”. The nodes Dry and Loses tell us in the same way if the tree is dry and if the tree is losing its leaves, respectively.
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Figure 1: BN representing the domain of the Apple Jack problem.

The BN in Figure 1 models the causal dependence from Sick to Loses and from Dry to Loses. This is represented by
the two links.

When there is a causal dependence from a node A to another node B, we expect that when A is in a certain state this
has an impact on the state of B. One should be careful when modeling the causal dependences in a BN. Sometimes it
is not quite obvious in which direction a link should point. In our example, for instance, we say that there is a causal
link from Sick to Loses because when a tree is sick this might cause the tree to lose its leaves. But couldn’t one say
that when the tree loses its leaves it might be sick and then turn the link in the other direction? No, we cannot! It is the
sickness that causes the lost leaves and not the lost leaves that cause the sickness.

In Figure 1, we have the graphical representation of the BN. However, this is only what we call the qualitative repre-
sentation of the BN. Before we can call it a BN, we need to specify the quantitative representation.

The quantitative representation of a BN is the set of CPTs of the nodes. Tables 1, 2, and 3 show the CPTs of the three
nodes in the BN of Figure 1.

Sick = "sick" Sick = "not”
0.1 0.9

Tabel 1: P(Sick)

£

Dry ="dry Dry = "not"”
0.1 0.3

Tabel 2: P(Dry)

Dry ="dry” Dry = "not”
Sick = "sick" Sick = "not” Sick = "sick” Sick = "not”
Loses = "yes” 0.95 0.85 0.50 0.02
Loses = "no" 0.05 0.15 0.10 0.98

Tabel 3: P(Loses | Sick, Dry)
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Note that all three tables show the probability of a node being in a specific state depending on the states of its parent
nodes but since Sick and Dry do not have any parent nodes, the distributions in Tables 1 and 2 are not conditioned on
anything.

BN that are concerned with the causal relations between variables at a given instance, such as the one described above,
are sometimes known as Static Bayesian Networks (SBNs). SBNs are concerned only with the current situation and do
not explicitly model temporal sequences, i.e. the past is ignored and the future is not predicted. For example, in Figure
2, there are two diseases (D1 and D2) which can cause different symptoms (S1 and S2). Using the information at hand
on the symptoms makes it possible to predict the probabilities of each disease.

D1 Dz

Figure 2: An example of Static Bayesian Network (SBN).

In many problem domains, such as the medical situation considered above, it is almost inconceivable to represent data
and reason about them without using a temporal dimension, since things evolve through time. SBNs, like the one
represented in Figure 2, can’t be used for such systems and thus the network has to be expanded to include temporal
information. Such networks are known as Dynamic Bayesian Networks (DBN). The simplest way to extend an SBN
into a DBN is by including multiple instances (time slices) of the SBN and linking these together. For example, the
network in Figure 3 is obtained by linking multiple instances of the network in Figure 2.
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D1 Dz

=S e:’ Z

Figure 3: An example of Dynamic Bayesian Network (DBN).

The existence of a disease today will have an effect on whether or not the disease will be there tomorrow. Therefore
there should be a link between the nodes representing “disease today” (nodes D1 and D2) and “disease tomorrow”
(nodes D1* and D2%*). Using this new network, it is possible to predict the progress of the diseases.

What was shown in the above examples is a description of how to construct very simple BNs. When we have constructed
a network, we can use it for entering evidence in some of the nodes where the state is known and then retrieve the new
probabilities computed in other nodes given this evidence. In the Apple Tree example, suppose we know that the tree
is losing its leaves. We then enter this evidence by selecting the state “yes” in the Loses node. Then we can read the
probability of the tree being sick as the probability of the node Sick being in state “sick” and the probability of the tree
being dry as the probability of the node Dry being in state “dry”.

Computing the probabilities of other variables given some evidence, like the situations described above is known as
Belief Updating. Another piece of information that might be interesting to find is the most likely global assignment of
the states of all random variables given some evidence. This is know as Belief Revision.

HUGIN provides you with a tool to construct such networks. After constructing the BNs, you can do belief revision, be-
lief updating, and much more. If you are in the process of learning more about the HUGIN Development Environment,
now would be a good time to go through the How to Build BNs (page 26) tutorial. Here, the Apple Tree BN is con-
structed using the HUGIN Graphical User Interface. You can also go on reading the Introduction to Object-Oriented
Networks (page 51); for example, object-oriented networks are very helpful when constructing networks with repeti-
tive structures like in the diseases network above. Or you might wish to go on reading the Introduction to Influence
Diagrams (IDs) (page 45); IDs are BNs extended with utility nodes and decision nodes.
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Definition of Bayesian Networks

Formally, a Bayesian network can be defined as follows:
A Bayesian network is a pair (G,P), where G=(V,E) is a directed acyclic graph (DAG) over a finite set of nodes (or
vertices), V, interconnected by directed links (or edges), E, and P is a set of (conditional) probability distributions.
The network has the following property:

* Each node representing a variable A with parent nodes representing variables By, B,...., B, (i.e., Bj, = A
for each i=1,...,n) is assigned a conditional probability table (CPT) representing P(A | B, Bo, ..., By).

The nodes represent random variables, and the links represent probabilistic dependences between variables. These
dependences are quantified through a set of conditional probability tables (CPTs): Each variable is assigned a CPT of
the variable given its parents. For variables without parents, this is an unconditional (also called a marginal) distribution.

Conditional Independence

An important concept for Bayesian networks is conditional independence. Two sets of variables, A and B, are said to be
(conditionally) independent given a third set C of variables if when the values of the variables C are known, knowledge
about the values of the variables B provides no further information about the values of the variables A:

P(A|B,C) = P(A|C)
Conditional independence can be directly read from the graph as follows: Let A, B, and C be disjoint sets of variables,
then
* identify the smallest sub-graph that contains A U B U C' and their ancestors;
* add undirected edges between nodes having a common child;
* drop directions on all directed edges.

Now, if every path from a variable in A to a variable in B contains a variable in C, then A is conditionally independent
of B given C (Lauritzen et al. 1990) (page 541).

To illustrate this concept, let us consider the following fictitious piece of fictitious medical knowledge

“Shortness-of-breath (dyspnoea) [d] may be due to tuberculosis [t], lung cancer [1] or bronchitis [b], or none of them,
or more than one of them. A recent visit to Asia [a] increases the risk of tuberculosis, while smoking [s] is known to
be a risk factor for both lung cancer and bronchitis. The result of a single chest X-ray [x] does not discriminate
between lung cancer and tuberculosis, neither does the presence or absence of dyspnoea” (Lauritzen & Spiegelhalter
1988) (page 541).

The last fact is represented in the graph by the intermediate variable e. This variable is a logical-or of its two parents
(t and /); it summarizes the presence of one or both diseases or the absence of both.

Figure 4 shows a model for the knowledge.
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Visit to Asia?

Tuberculosis? Lung cancer? Bronchitis?

Tuberculosis or cancer?

Positive X-ray? Dyspnoea?

Figure 4: Graph representing structural aspects of medical knowledge concerning lung diseases.

If we learn the that a patient is a smoker, we will adjust our beliefs (increased risks) regarding lung cancer and bronchitis.
However, our beliefs regarding tuberculosis are unchanged (i.e., ¢ is conditionally independent of s given the empty
set of variables). Now, suppose we get a positive X-ray result for the patient. This will affect our beliefs regarding
tuberculosis and lung cancer, but not our beliefs regarding bronchitis (i.e., b is conditionally independent of x given s).
However, had we also known that the patient suffers from shortness-of-breath, the X-ray result would also have affected
our beliefs regarding bronchitis (i.e., b is not conditionally independent of x given s and d).

These (in)dependences can all be read from the graph of Figure 1 using the method described above.

Another, equivalent method to determine conditional independence is d-separation (page 289)., due to Pearl (1988)
(page 541)..

Inference

Inference in a Bayesian network means computing the conditional probability for some variables given information
(evidence) on other variables.

This is easy when all available evidence is on variables that are ancestors of the variable(s) of interest. But when
evidence is available on a descendant of the variable(s) of interest, we have to perform inference opposite the direction
of the edges. To this end, we employ Bayes’ Theorem:

p(ap) = ZEAPA) (B]L‘Z%D ()

HUGIN inference is essentially a clever application of Bayes’ Theorem; details can be found in the paper by Jensen et
al. (1990(1)) (page 541)..
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Networks with Conditional Gaussian Variables

The HUGIN Decision Engine is able to handle networks with both discrete and continuous random variables. The
continuous random variables must have a Gaussian (also known as a normal) distribution conditional on the values of
the parents.

The distribution for a continuous variable Y with discrete parents I and continuous parents Z is a (one-dimensional)
Gaussian distribution conditional on the values of the parents:

PY|I =i,7Z = 2) = N(a() + 80)$70))

Note that the mean depends linearly on the continuous parent variables and that the variance does not depend on the
continuous parent variables. However, both the linear function and the variance are allowed to depend on the discrete
parent variables. These restrictions ensure that exact inference is possible.

Note that discrete variables cannot have continuous parents.
Figure 5 shows a network model for a waste incinerator (Lauritzen 1992 (page 541)):

“The emissions (of dust and heavy metals) from a waste incinerator differ because of compositional differences in
incoming waste [W]. Another important factor is the waste burning regimen [B], which can be monitored by
measuring the concentration of CO2 in the emissions [C]. The filter efficiency [E] depends on the technical state [F']
of the electro filter and on the amount and composition of waste [W]. The emission of heavy metals [Mo] depends on
both the concentration of metals [Mi] in the incoming waste and the emission of dust particulates [D] in general. The
emission of dust [D] is monitored through measuring the penetrability of light [L].”

Buming regimen Waste type

Filter efficiency Metals in waste

CO2 concentration

Figure 5: The structural aspects of the waste incinerator model: B, F, and W are discrete variables, while the remaining
variables are continuous.

The result of inference within a network model containing conditional Gaussian variables is - as always - the beliefs (i.e.,
marginal distributions) of the individual variables given evidence. For a discrete variable this amounts to a probability
distribution over the states of the variable. For a conditional Gaussian variable two measures are provided:

1. the mean and variance of the distribution;

2. since the distribution is in general not a simple Gaussian distribution, but a mixture (i.e., a weighted sum) of
Gaussians, a list of the parameters (weight, mean, and variance) for each of the Gaussians is available.

From the network shown in Figure 5 (and given that the discrete variables B, F, and W are all binary), we see that
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* the distribution for C can be comprised of up to two Gaussians (one if B is instantiated);
* initially (i.e., with no evidence incorporated), the distribution for E is comprised of up to four Gaussians;

« if L is instantiated (and none of B, F, or W is instantiated), then the distribution for E is comprised of up to eight
Gaussians.

See also the section on Gaussian distribution functions for details on how to specify a conditional Gaussian distribution
function using the HUGIN Graphical User Interface.

To learn how to build a Bayesian network using the HUGIN Graphical User Interface, please consult the tutorial How
to Build BNs (page 26).

3.2.3 How to Build a Bayesian Network

This tutorial shows you how to implement a small Bayesian network in the Hugin Graphical User Interface. The network
we are about to implement is the one modeled in the Apple Tree example in the Bayesian Networks Tutorial (page 19).

The qualitative representation of our network is shown in Figure 1.

Figure 1: Bayesian network representing the Apple Tree problem.

If you want to understand the design of this network, you should read about it in the Bayesian Networks Tutorial
(page 19).

Constructing a New Network

When you choose to start up the HUGIN Graphical User Interface, the Main HUGIN Window (or simply the Main
Window) opens. This window contains a menu bar (called the Main Window Menu Bar), a tool bar (called the Main
Window Tool Bar), and a document pane (called the Main Window Document Pane or simply the Document Pane).
In the Document Pane, a new empty network called “unnamed1” is automatically opened in a network window (see
Figure 2). It starts up in Edit Mode which allows you to start constructing the network immediately (the other main
mode is Run Mode which allow you to use the network).
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2] Class: unnamed1 ?|E@

‘ Tables Pane Button

Tables Pane

Network Pane

Figure 2: The network window containing a Tool Bar, a Tables Pane, and a Network Pane.

Adding Nodes

The first thing we will do is add the Sick node. This can be done as follows:
¢ Select the Discrete Chance Tool in the Tool Bar of the “unnamed1” network window (see Figure 3).
* Click somewhere in the Network Pane (see Figure 2).
When we have clicked in the Network Pane, a node labeled “C1” appears. We want to change this label to “Sick”:
¢ Select the node with the mouse cursor.
 Enter “Node Properties” by pressing the node properties tool (see Figure 3).
* Change both the “Name” and the “Label” fields to “Sick”.
* Press the “OK” button.

The “Name” is the internal name of the node while “Label” is the label of the node. If no label is specified (as was the
case before we changed the label) the label used is the internal name. The internal name can consist of only the letters
‘a’-‘z’ and ‘A’-Z’, the digits ‘0’-‘9’, and the underscore character ‘_’ while the label can be almost anything. Please
note that the first character of the name must be a letter.
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The Dry and Loses nodes are added the same way. We can add more nodes without having to press the Discrete Chance
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Tool all the time by holding down the SHIFT key while clicking in the Network Pane. When we have chosen a node in
the Network Pane, we can access the node properties tool by holding down the right mouse button.

Figure 4: The Network pane contains the three nodes Sick, Dry, and Loses that have been added to the network.

Adding Links

Now, we have a network similar to the one shown in the Network Pane in Figure 4. To add the links from Sick to Loses
and from Dry to Loses, do as follows:

* Press the Link Tool (see Figure 3).

* Drag a link from Sick to Loses with the left mouse button while holding down the SHIFT key. The SHIFT key
ensures that we can add more links without having to press the Link Tool again.

* Drag a link from Dry to Loses with the left mouse button.

What we have now is the complete qualitative representation which is similar to the one in Figure 1. The next step will
be to specify the states and the conditional probability table (CPT) of each node.

The States

In the introduction to BNs (page 19) the states of the nodes were specified as follows: Sick has two states: “sick” and
“not”, Dry has two states: “dry” and “not”, and Loses has two states “yes” and “no”.

First, we open the Tables Pane by clicking the tables-pane button.
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Figure 5: The CPT is opened by pressing the left mouse button over a node, while holding down the “ctr]” button.

Next, we specify the states of Sick:

* Hold down the “ctr]” button while clicking the left mouse button over the node “Sick” to display its CPT in the
Tables Pane, as shown in Figure 5.

* Click the field containing the text “State 1” in the CPT in the Tables Pane.
* Type the text “sick” in the field to give the state this name.
¢ Click the field containing the text “State 2" in the CPT.
* Type the text “not” in the field.
Now, do the same with Dry.

We can do exactly the same with Loses. Beware that the CPT of Loses is a little bigger than those of Sick and Dry.
This is just because Loses has parent nodes (Sick and Dry don’t).

* Name the two states of Loses “yes” and “no”.
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Entering CPT Values

The next step is to enter the CPT values correctly (as default, the Hugin Graphical User Interface has given all nodes a
uniform distribution). The values were specified in the introduction to BNs (page 19) and they are shown in Tables 1,

2, and 3.

Sick = "sick”

Sick = "not”

0.1

0.3

Tabel 1: P(Sick)

[}r", - Ndr‘il'”

Dry = "not”

0.1

0.5

Tabel 2: P(Dry)

Dry ="dry” Dry = "not”
Sick = "sick" Sick = "not” Sick = "sick” Sick = "not”
Loses = "yes” 0.95 0.85 0.90 0.02
Loses = "no” 0.05 0.15 0.10 0.98

Tabel 3: P(Loses | Sick, Dry)

First, we select all three nodes (shortcut: Ctrl+A) to get the CPTs displayed in the Tables Pane. Next, we enter the
values into the Sick node:

¢ Click the field representing Sick=""sick”.
¢ Enter the value 0.1 (from Table 1).
¢ Click the field representing Sick="not”.
¢ Enter the value 0.9 (from Table 1).

Enter the values for Dry and Loses the same way. When you have entered the CPT for Loses, the network window
should look like Figure 6.
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Figure 6: The network window with node Loses selected. The CPT of Loses appears in the Tables Pane.

This completes the construction of the network. At this point it would be a good idea to save the network. Here is how

to do it:
¢ Select “Save” (or “Save As”) from the “File” menu.

* Enter a name (e.g. “apple”).

¢ Press “Save”.

Compiling the Network

Now, let’s compile the network and see how it works:

¢ Press the Run Mode tool button in the Tool Bar (see Figure 7).

7

Figure 7: The Run Mode tool button.
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The compiler checks for the following errors:
* Cycles. There must be no directed cycles in a network.

* For each parent configuration of a node the probabilities of the different states must have the sum of 1. In
other words, each column of the table must sum to 1. If there is a column that does not sum to 1, the compiler
will normalize the values. This fact can be utilized when filling in the probabilities. Say, for example, that the
probability of a tree being sick is based on the observation of 13527 trees over one season, where 1678 got sick
and the rest didn’t. Instead of first computing the fractions, we just put 1678 in the sick state of the Sick node,
and 11849 in the no state. Then the compiler will compute the proper values.

If you have done exactly as this tutorial told you, there should not be any errors in the compilation process. The
compilation should be finished very fast with a small network like ours. After the compilation, the Run Mode is
entered (we have so far only been working in Edit Mode).

Running the Network

Running in Run Mode, the network window is split into two by a vertical bar (see Figure 8). To the left is the Node
List Pane and to the right is the Network Pane.

= unnamed1 - O x

= =} G ¥ SPDaxal-

= |
+ - Dry
= {0 Loses
] 18,32 yes
] 51.68 no

= ODSick
— 10,00 sick

— 90,00 not

Figure 8: The network window in Run Mode. To the left is the Node List Pane (having Loses and Sick expanded) and
to the right is the Network Pane.

We can view the probabilities of a node being in a certain state by expanding the node in the Node List Pane. We expand
(collapse) a node by clicking its expand (collapse) icon in the Node List Pane, by double-clicking its node symbol in
the Node List Pane, or by selecting (deselecting) it in the Network Pane. We can also expand (collapse) all nodes at
once by pressing the expand (collapse) node list tool in the Tool Bar just to the right of the node properties tool.
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Is the Tree Sick?

Now, imagine that we want to use our network to find the probability of an apple tree being sick given the information
that the tree is losing its leaves. This is done as follows:

» Expand all nodes (by pressing the expand node list tool).
 Enter the fact that the tree is losing its leaves by double clicking the state “yes” of the Loses node.
* Propagate this piece of evidence by pressing the Sum Propagation Tool in the Tool Bar (see Figure 9).

 Read the probability of Sick being in state “sick”
=
Figure 9: The Sum Propagation Tool.

This should give the output shown in Figure 10.

1% unnamed1 - 0O x

 Bail=Gael % HOa@ak-

12 unnarmed1
E .DDW
/B 46,94 dry
B 53.06 nokt
- @ Loses

[ 1 10000ves |
—/ - nao
= .DSick
/] 49,40 sick,

B ] 50,60 not )

Figure 10: Our network after the evidence that the tree is losing its leaves has been entered and propagated.

The probability of the tree being sick is now 0.49.

If you do not read the value specified above, you have probably mistyped something when filling in the CPTs. Then
please check the CPTs of all the nodes.
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The Monitor Windows

In the last section, we used the Node List Pane to enter evidence and retrieve beliefs. We can also do this by using the
monitor windows. The monitor windows show the same information as the Node List Pane but we have the opportunity
to place the monitor windows near the corresponding nodes of the network in the Network Pane. We can open a monitor
window for each node in the Network Pane, but the best way to use them is probably only to open a monitor window
for the nodes in the network which have special interest. Otherwise, they might take up too much space.

Now, we shall open monitor windows for Sick and Loses and repeat the computations from before. First, initialize the
network:

* Press the Initialize Tool button (to the left of the Sum Propagation Tool).
Then, we are ready to open the monitor windows of Sick and loses.
* Select Sick and Loses (hold down the SHIFT key to select more nodes at the same time).

¢ Choose “Show Monitor Windows” from the “View” menu.

1% unnamed1 - O x

| B =1 Ge<C 7 Hoakalk:-

- unnamedi
E ODDW
/] 46,94 dry
/] 53.06 naot

= .DLDSES Sick =
:m 49,40 sick “
OID:kI - no 50,60 not
= Sic
B 49,40 sick
/] 50,60 not g
|
Loses i
I =
0.00 no

Figure 11: Monitor windows of Sick and loses shown in the Network Pane.

The rest of this tutorial introduces some very useful aspects of the HUGIN Graphical User Interface, but it can be
skipped.
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The Most Likely Combination

From the propagation in the previous section we could see that the probability of the apple tree suffering from drought
is 0.47. In both the case of Sick and Dry it is more likely that the state is “not”. This could make one believe that the
most likely combination of states is when both Sick and Dry are in state “not”. However, this is a wrong conclusion.
If we want to find the most likely combination of states in all nodes, we should use max propagation (in stead of sum
propagation). The Max Propagation Tool is found in the Tool Bar just to the right of the Sum Propagation Tool.

Now, try to press the Max Propagation Tool. In each node, a state having the value 100.00 belongs to a most likely
combination of states. In this case, this gives one unique combination being the most likely: Sick is “sick” and Dry is
“not”

We see that even if Sick="sick” is less likely than Sick="not”, Sick="sick” is contained in the most likely combination
of the states of the nodes while Sick="not” is not. This shows that we need to be careful in making conclusions from
the result of a propagation.

Now, one might want to know the probability of this most likely combination of states (or of any other combination of
states) under the assumption that the entered evidence holds.

Computing the Probability of a Combination of States

Here, we shall describe a technique to compute the probability of the most likely combination of states given the
evidence that the apple tree is losing its leaves. This probability is written:

P(Sick ="yes”, Dry = "not”|Loses = "yes”)

Each time we perform sum propagation in a network, the probability of the entered evidence is shown in the lower
left corner of the HUGIN Graphical User Interface window (the P(All) value). If we have chosen the “yes” state of
the Loses node and performed sum propagation, we can read the probability of Loses="yes” (written P(Loses="yes”)).
This value should be 0.1832.

The technique uses the following rule from probability theory (known as the fundamental rule):
P(A,B) = P(A|B)P(B)

The only kind of probability we can get from HUGIN is the probability of a series of pieces of evidence which can be
written in the form:

P(A1, A2, ..., An)
We use the fundamental rule to rewrite our requested probability to some expression composed by such components:

P(Sick ="yes”, Dry = "not”|Loses = "yes”)
= P(Sick =" sick”, Dry ="not”, Loses = "yes”)/P(Loses = "yes”)

In the fundamental rule, we have divided both sides with P(B). Then we have substituted A with Sick="yes”, Dry="not”
and B with Loses=""yes”.

We already know P(Loses="yes”) so we only need to compute P(Sick="sick”, Dry="not”, Loses="yes”). This is done
as follows:

* Enter Sick="sick”, Dry="not”, and Loses="yes” in the network.
* Press the Sum Propagation Tool.

* Read P(Sick="sick”, Dry="not”, Loses=""yes”) as the P(All) value in the lower left corner.
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This value should be 0.081. Now, we are ready to compute the requested probability:

P(Sick ="yes”, Dry = "not”|Loses = "yes”)
= 0.081/0.1832
= 0.442

So, the probability of the most likely combination of states of Sick and Dry, given that Loses="yes”, is 0.442.

3.2.4 Introduction to (Limited Memory) Influence Diagrams

Introduction to (Limited Memory) Influence Diagrams A (limited memory) influence diagram (ID) may be used instead
of a Bayesian network (BN) if you wish to explicitly model various decision alternatives and the utilities associated
with these. To some extent it is possible to construct a model for decision making with a pure BN, but the concepts of
utility and decisions are not explicitly covered. An influence diagram is simply a BN, extended with utility nodes and
decision nodes. Having these two new types of nodes, we also need to have a name for the old node type. We shall call
these nodes chance nodes. We shall present the concept of influence diagrams by extending the BN constructed in the
apple tree example from the Introduction to BNs.

The Apple Tree Example

Again, we consider the Apple Tree Example (see Figure 1).

Figure 1: The BN constructed in the Introduction to BNs

Apple Jack now wants to decide whether or not to invest resources in giving the tree some treatment. Since this
involves a decision through time, we have to modify the BN into a dynamic one as described in the Introduction to BNs
Introduction to BNs (page 19) section. We first add three nodes very similar to those already in the network. The new
nodes Sick’, Dry’, and Loses’ represent the same as the old nodes - except that they represent the situation at the time
of harvest. These nodes have been added in Figure 2.
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=

Figure 2: Addition of similar nodes representing the harvest time expectations of the state of the tree.

The new nodes can be in the same states as the old nodes: Sick’ can be either “sick” or “not” - Dry’ can be either “dry”
or “not” - and Loses’ can be either “yes” or “no”. In the new model, we expect a causal dependence from both the old
Sick node to the new Sick’ node and the old Dry node to the new Dry’ node. This is because if, for example, we expect
the tree to be sick now, then this is also very likely to be the case in the future. Of course the strength of the dependence
depends on how far out in the future we look. Perhaps one could also have a dependence from Loses to Loses’ but we
have not done so in this model.

Apple Jack has the opportunity to do something about his problem. He can try to heal the tree with a treatment to get
rid of the possible sickness. If he expects that the losing of leaves is caused by drought, he might save his money and
just wait for rain. The action of giving the tree a treatment is now added as a decision node to the BN which will then no
longer be a BN. Instead it will be the influence diagram shown in Figure 3. Action nodes are represented by rectangles.
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Figure 3: Addition of a decision node for treatment.

The Treat decision node has the states “treat” and “not”. As it appears from Figure 3, we have added a link from Treat
to Sick’. This is because we expect the treatment to have an impact on the future health of the tree. Before the influence
diagram is completed, we need to specify the utility function enabling us to compute the expected utility of a decision.
This is done by adding utility nodes to the diagram, each contributing with one part of the total utility. The utility nodes
are added in Figure 4. Utility nodes are represented by diamonds.
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Figure 4: The complete qualitative representation of the (limited memory) influence diagram used for decision making
in Apple Jack’s orchard.

The utility node Cost gathers information about the cost of the treatment while Harv represents the utility at the time of
the harvest. It depends on the state of Sick’ indicating that the production of apples depends on the health of the tree.
Figure 4 shows the complete qualitative representation of the influence diagram. To get the quantitative representation
as well, we need to construct a conditional probability table (CPT) for each chance node and a utility table for each
utility node. A decision node does not have any table. The following tables show one way of how the CPTs of the
chance nodes could be specified.

Sick = "sick" Sick = "not”
0.1 0.9

Table 1: P(Sick).

Dry = "dry” Dry = "not"”
0.1 0.9

Table 2: P(Dry).
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Dry ="dry” Dry = "not”
Sick = "sick" Sick = "not” Sick = "sick” Sick = "not”
Loses = "yes” 0.95 0.85 0.50 0.02
Loses = "no” 0.05 0.15 0.10 0.98
Table 3: P(Loses | Sick, Dry).
Treat = "treat” Treat = "not”
Sick = "sick" Sick = "not” Sick = "sick” Sick = "not”
Sick’ = "yes" 0.20 0.01 0.99 0.02
Sick’ = "not” 0.80 0.99 0.01 0.98
Table 4: P(Sick’ | Sick, Treat).
Dry = "dry"” Dry = "not”
Dry’ = "dry” 0.60 0.05
Dry’ = "not” 0.40 0.95
Table 5: P(Dry’ | Dry).
Dry' ="dry” Dry’ = "not”
Sick’ = "sick" Sick” = "not” Sick "= "sick” Sick” = "not”
Loses' = "yes” 0.95 0.85 0.90 0.02
Loses" = “not” 0.05 0.15 0.10 0.98

Table 6: P(Loses’ | Sick’, Dry).

The following tables show how the tables of the utility nodes could be specified in USD.

Sick” = "sick”

Sick’ = "not"

3000

20000

Table 7: U(Harv).

Treat = “treat”

Treat = "not”

-2000

0

Table 8: U(Cost).

The utility tables are simply cost functions. Table 7 can be interpreted as if we have healthy tree (Sick’ is in state “not”),
then Apple Jack will get a $20000 income, while if the tree is sick (Sick’ is in state “yes”) Apple Jack’s income will be
only $3000. Table 8 shows that to treat the tree, Apple Jack has to spend $8000. The purpose of our influence diagram
is to be able to compute the action of the Treat node giving the highest expected utility. This is a very tricky job if you
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are to do it without the help from a computer and we shall not do it here. In stead, we suggest that you now try to go
through the two tutorials (page 15) describing how to implement this influence diagram in the HUGIN Graphical User
Interface and let it do the computations. Also, you might be interested in learning more about the semantics of (limited
memory) influence diagrams (page 345)

Definition of (Limited Memory) Influence Diagrams

An (limited memory) influence diagram is a Bayesian network augmented with decision and utility nodes (the random
variables of a limited memory influence diagram are often called chance variables). The limited memory influence
diagram relaxes two fundamental assumptions of the traditional influence diagram: the non-forgetting assumption and
the total order on decisions.

We are interested in making the best possible decisions for our application. We therefore associate utilities with the
state configurations of the network. These utilities are represented by utility nodes. Each utility node has a utility
function that to each configuration of states of its parents associates a utility. (Utility nodes do not have children). By
making decisions, we influence the probabilities of the configurations of the network. We can therefore compute the
expected utility of each decision alternative (the global utility function is the sum of all the local utility functions). We
shall choose the alternative with the highest expected utility; this is known as the maximum expected utility principle.

Relaxing the non-forgetting assumption and the total order on decisions implies a significant change in the semantics
of a LIMID compared to a traditional influence diagram. In a LIMID it is necessary to specify for each decision the
information available to the decision maker at that decision. There are no implicit informational links in a LIMID.A
link into a decision node specify that the value of the parent node is known at the decision.

The computational method underlying the implementation of limited memory influence diagrams in the HUGIN De-
cision Engine is described by Lauritzen & Nilsson (2001) (page 541). The algorithm used is known as Single Policy
Updating. (page 258)

The Oil Wildcatter Example

As another example, consider the following decision scenario:

An oil wildcatter must decide whether or not to drill. He is uncertain whether the hole is dry, wet, or soaking. At a
cost of $10,000, the oil wildcatter could take seismic soundings which will help determine the underlying geological
structure at the site. The soundings will disclose whether the terrain below has closed structure (good), open structure
(s0-s0), or no structure (bad).

This decision scenario can be represented by the influence diagram of Figure 5, where T represents the decision on
whether or not to test; D represents the decision on whether to drill or not to drill; S represents the outcome of the
seismic soundings test (if the oil wildcatter decides to test); H represents the state of the hole; C represents the cost
associated with the seismic soundings test; and P represents the expected payoff associated with drilling.
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Figure 5: An influence diagram for the oil wildcatters decision problem.

The cost of drilling is $70,000. If the oil wildcatter decides to drill, the expected payoff (i.e., the value of the oil found
minus the cost of drilling) is $-70,000 if the hole is dry, $50,000 if the hole is wet, and $200,000 if the hole is soaking;
if the oil wildcatter decides not to drill, the payoff is (of course) $0.

The experts have estimated the following probability distribution for the state of the hole: P(dry)=0.5, P(wet)=0.3, and
P(soaking)=0.2. Moreover, the seismic soundings test is not perfect; the conditional probabilities for the outcomes of
the test given the state of the hole are:

dry wet soaking
closed structure 0.1 0.3 0.5
open structure 0.2 0.4 0.4
no structure 0.6 0.3 0.1

On the basis of this (limited memory) influence diagram, the HUGIN Decision Engine computes the utility associated
with testing to be $22,500 and the utility associated with not testing to be $20,000. The optimal strategy is to perform
the seismic soundings test, and then decide whether to drill or not to drill based on the outcome of the test.

Notice that the informational link from node 7 to node D is of outmost importanct. The LIMID relaxes the non-
forgetting assumption of the traditional influence diagram. This implies that for each decision node it is necessary
(and very important) to specify exactly the information available to the decision maker. No informational links can
be assumed implicitly present in the network. [This example is due to Raiffa (1968) (page 541). A more thorough
description of this example is found in the Examples (page 517) section.]
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The Apple Tree Example Continued

The LIMID in Figure 4 representing the decision problem of Apple Jack assumes a single decision with no observations
made prior to the decision. In a more realistic setting Apple Jack is likely to monitor the tree over a period of time such
as each day. Assume he prior to making a decision on treating the tree observes whether or not the tree is loosing its
leaves. Each day he observes if the tree is loosing its leaves and makes a decision on the treatment irrespectively of
what he did the previous day. We may use a limited memory influence diagram to model this situation.

Dry 0 Dry 1 Dry_2 Dry_3

Loses_0 Loses_1 Loses_2 Loses_3

\ \ \
\ \
Sick_0 - Sick_1 - Sick_2 - Sick_3 Sick_4
! ! !
1
1 1 1

. . .

Treat 1 Treat 2 Treat 3 Harv

Figure 6: A limited memory influence diagram for Apple Jack with multiple decisions.

—

Figure 6 shows a limited memory influence diagram for the situation described above where Apple Jack monitors the
tree for three days before harvest. The informational links of the diagram specifies that Apple Jack each day observes
whether the tree is (still) loosing its leaves, but otherwise neither recalls the observations nor the decisions made at
previous time steps.

The solution to the LIMID is a strategy consisting of one policy for each decision. The policy is a function from
the known variables to the states of the decision. It is not a function of all past observations as the decision maker
is assumed only to know the most recent observation on loses leaves. This is different from the traditional influence
diagram where the policy would be a function from all past observations and decisions as the decision maker is assumed
to be non-forgetting.

In the example there is a total order on the decisions. This need not be the case in general.

To learn how to build a LIMID using the HUGIN Graphical User Interface, please consult the How fo Build LIMIDs
tutorial (page 45). Also, you might be interested in learning more about the semantics of (limited memory) influence
diagrams (page 345) and the associated constraints imposed on their usage.
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3.2.5 How to Build a (Limited Memory) Influence Diagram

This tutorial shows you how to implement a small influence diagram in the HUGIN Graphical User Interface. It requires
that you have already constructed the Bayesian network from the How to Build a Bayesian Network Tutorial (page 26).
The influence diagram you are about to implement is the one modeled in the /nfluence Diagrams Tutorial (page 37).
It helps plantation owner Apple Jack to decide whether or not to give his apple tree, which is losing its leaves, some
treatment. The qualitative representation of the influence diagram is shown in Figure 1.

©

Sick Dry Treat

Loses Sick' Dry’

Harv Loses'

Figure 1: The qualitative representation of the influence diagram used for decision making in Apple Jacks plantation.

Open the Network for Editing

First, you must open the network constructed in the How ro Build BNs (page 26) tutorial if it is not already open. Here
is how to do it:

* Select “Open” from the “File” menu.

 Enter the name of the network file (“apple.net”). You can do this by selecting it from the list of network files
(which have the “net” extension).

In Figure 2, the network has been opened and the HUGIN Graphical User Interface is currently working in Edit Mode.
We need to be in Edit Mode to edit the network, so if your network window shows the network in Run Mode, press the
Edit Mode tool button. If you opened it in Edit Mode, you do not need to do anything.
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Figure 2: The Network Window in Edit Mode with the network from the How to Build BNs tutorial.

Copying Nodes

In the influence diagram in Figure 1, there are three nodes very similar to those that we already have. In this case, the
HUGIN Graphical User Interface™ allows you to copy a group of nodes and paste them in another area of the Network
Pane. Here is how to do it:

* Create a rectangle selection with the mouse cursor around all three nodes (drag a rectangle by holding down the
left mouse button).

* Select “Copy” from the “Edit” menu in the Main Window Menu Bar.
¢ Select “Paste” from the “Edit” menu in the Main Window Menu Bar.
* Move the new group of nodes to a spot where there is room for them.

The HUGIN Graphical User Interface generates new names and labels for the new nodes. You can keep the names and
change the labels to Sick’, Dry’, and Loses’ (you cannot use “Sick’” as the name because it contains the prime character
which is illegal in names):

¢ Select the node with the mouse cursor.

 Enter “Node Properties” by pressing the node properties tool (the 2nd left-most tool button in the tool bar of the
network window).
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* Change the “Label” field.
¢ Press the “OK” button.

Perform the steps above for all three new nodes. Your network should then look as the one in Figure 3.

= unnamed - 0O x

ESONB/IRTOOaga i Q

Edit Functions | View

| . |
Loses’

Dry' dry not
4 Sick! sick not sick not
yes 0.95 0.85 0.9 0.02
» NO 0.05 0.15 0.1 0.98

Figure 3: The network extended with Sick’, Dry’, and Loses’.

The next step is to add causal links from Sick to Sick” and from Dry to Dry’: * Press the Link Tool. * Drag a link from
Sick to Sick’ with the left mouse button (while holding down the SHIFT key). * Repeat for Dry to Dry’.

Holding down the SHIFT key enables you to create more causal links sequentially without having to reactivate the Link
Tool.

Adding a Utility Node

So far, the network we have constructed is still a Bayesian network. Now, we shall make the first change that makes it
an influence diagram. This change is the addition of a utility node. The utility node we shall add is the Harv node (see
Figure 1) representing the utility gained from the harvest. Here is how to add it:

* Press the Utility Tool (to the right of the Link Tool).
¢ Click somewhere in the Network Pane (a good place would be in the lower right corner besides the Loses’ node).
* Change the name and label of the new utility node to “Harv”.
The harvest depends on the state of Sick’ and thus there is an link from Sick’ to Harv. Add this link:
e Press the Link Tool.

* Drag a link from Sick’ to Harv.
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The utility of the harvest was specified to that found in Table 1.

Sick’ = "sick™ | Sick’ = "not”
3000 20000

Table 1: U(Harv).

You enter the values of Table 1 into the utility table of Harv as follows:
* Select the Harv node by clicking it with the left mouse button.

* Enter the values from Table 1 in the utility table in the Tables Pane.

A Desicion Node and One More Utility Node

Now, you are about to add the decision node Treat (see Figure 1). This is done similar to the way you add chance nodes
and utility nodes:

* Press the Decision Tool (to the right of the Utility Tool).
* Click somewhere in the Network Pane (a good place would be to the right of the Dry node)
* Change the name and label of the new decision node to “Treat”.
You add an action to a decision node in the same way as you add a state to a chance node:
* Select the Treat node with the left mouse button.
* Press the add state tool.
* Change the action names to “treat” and “not”.
The Treat decision node has an impact on the Sick’ node so:
* Add a link from Treat to Sick’.

The new decision node represents the decision to give the tree some treatment or not. If the plantation owner (Apple
Jack) chooses to give treatment this will cost him something which shall be modeled by the Cost utility node. The Cost
node has the utility table shown in Table 2.

Treat = "treat” Treat = "not"
-8000 1)

Table 2: U(Cost).

Now, add the Cost utility node to the influence diagram:
* Add a new utility node (a good place would be to the right of the Treat node).
* Change the name and label of this node to “Cost”
* Add alink from Treat to Cost.
* Fill in Table 2 in the utility table of Cost.
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Filling in CPTs

When we copied the nodes Sick’ and Dry’, they inherited the CPTs of Sick and Dry. However, as both these nodes
have become children of other nodes, their CPTs are no longer correct. Their new CPTs were specified to those found
in Table 3 and Table 4. * Fill in Table 3 as the CPT of Sick’. * Fill in Table 4 as the CPT of Dry’.

Treat = "treat” Treat = "not”
Sick = "sick" Sick = "not” Sick = "sick” Sick = "not”
Sick’ = "yes" 0.20 0.01 0.95 0.02
Sick’ = "not” 0.80 0.95 0.01 0.98

Table 3: P(Sick’ | Sick, Treat).

Dry = "dry"” Dry = "not”

Dry’ = "dry”

0.60

0.05

0.40

0.95

Dry’ = "not"”

Table 4: P(Dry’ | Dry).

Now, your (limited memory) influence diagram (LIMID) is finished and it should look like the one in Figure 4. At this

point it would be a good idea to save your LIMID.

Treat

Sick Dry

Loses Sick' Dry'

Harv Loses'

Figure 4: The complete influence diagram.
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Compiling the Limited Memory Influence Diagram

You can now try out the LIMID. First, compile the LIMID:
* Press the compile tool (the right most tool button in the network window Tool Bar).

The compilation of an influence diagram may produce some of the same errors as described in the How to Build BNs
(page 26) tutorial. If the LIMID does not compile, you have probably made some minor error. Once the influence
diagram has been compiled, probabilities and expected utilities are computed under the initial policy. To solve the
influence diagram it is necessary to invoke Single Policy Updating (page 258).

What Should Apple Jack Do?

When the LIMID has been compiled, you should do a Single Policy Updating (page 258) . Now, imagine that the only
thing Jack knows about his tree is that it is losing leaves. Then, what will be the best thing for him to do? To find out
this, follow these steps:

» Expand the Loses chance node and the Treat decision node in the node list pane on the left (simply select them).
 Enter the evidence that Loses is “yes” (by double clicking the “yes” state).

* Propagate the influence diagram (press the Sum Propagation Tool, unless auto-propagate is set).

* Read the expected utility of “treat” and “not” in the Treat decision node.

You should be reading something looking like that in Figure 5.

E‘J unnamed - O x

%Ej:: ,_,:;f:j ? .@)@Q@)\QE/Q

| 100.00 yes
[ D #y9594.01

| I— - no
T 1 0

+ (D0 Loses'

{3 sick.

+ (0 sick

- OO Treat

1 0.00 treat
o — 0.00

| — 100,00 not
[m— e S

+ 4@ [ Cost
+ - [Harv

Figure 5: The influence diagram propagated with the evidence that Loses="yes”.

You read 11514 as the expected utility of doing nothing. This suggests that it will be best for Apple Jack not to treat
the tree.
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This finishes the tutorial. You should now be able use the HUGIN Graphical User Interface to construct your own
(limited-memory) influence diagrams. However, if you want to create large and complex models, you should study the
area more than just reading this tutorial.

Please read the document semantics of LIMID (page 345) to learn more about LIMIDs.

3.2.6 Introduction to Object-Oriented Networks

An Object-Oriented Network is a network (i.e., Bayesian network or LIMID model) that, in addition to the usual nodes,
contains instance nodes. An instance node is a node representing an instance of another network. In other words,
an instance node represents a subnet. Therefore, following standard object-oriented terminology, an object-oriented
network is often referred to as a class. Of course, the network of which instances exist in other networks can itself
contain instance nodes, whereby an object-oriented network can be viewed as a hierarchical description (or model) of
a problem domain. There are three main advantages of constructing a network using instance nodes, as described in
the following.

The model construction activity most often involves repeated changes of level of abstraction. That is, it is performed
in a top-down fashion, a bottom-up fashion, or a mix of the two. Such repeated changes of focus are due partly to the
fact that humans naturally think about systems in terms of hierarchies of abstractions and partly due to lack of ability
to mentally capture all details of a complex system simultaneously. The use of instance nodes provides support for
working with different levels of abstraction in constructing network models.

As systems often are composed of collections of identical or almost identical components, models of systems often
contain repetitive patterns (i.e., commonly occurring solutions or problem types). In Bayesian networks and LIMIDs,
such patterns are network fragments. The notion of instance nodes makes it very easy to construct multiple identical
instances of a network fragment.

Describing a network in a hierarchical fashion often makes the network much less cluttered, and thus provides a much
better means of communicating ideas among knowledge engineers and users.

The HUGIN Graphical User Interface 6.* supports construction of object-oriented networks in the basic interpretation
of the concept mentioned above. A fully object-oriented paradigm for constructing Bayesian networks and LIMIDs
should also support the notions of subclasses and inheritance, as known from object-oriented programming languages.
Thus, the basic mechanisms provided by the HUGIN Graphical User Interface 6.* supports the construction of what
might be called hierarchical networks.

Interface nodes

An instance node connects to other nodes via some of the (basic) nodes in the copy of the network (the master) of
which it is an instance. (Note that an instance node should be thought of as a copy of the network of which it is an
instance.) These nodes are known as interface nodes. As we wish to support information hiding, the interface nodes
only comprise a subset of the nodes in the master network. Interface nodes are subdivided into a set of input nodes and
output nodes.

Input nodes of an instance of a master network are not real nodes but only to be considered as placeholders for (basic)
nodes of the network(s) containing instances of the master network. These basic nodes are said to be bound to the input
nodes (and vice versa). Note that if an input node of an instance hasn’t been bound, a default potential (probability
table) will be associated with it. The probabilities in this table is specified in the master network. Output nodes of
an instance of a master network are real nodes that can be specified as parents of nodes in the network containing
the instance node or can be bound to an input node of another instance node of the network. The following example
demonstrates what all this means.
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The Disease Example Revisited

In the Bayesian Networks (page 19) section, we presented the dynamic Bayesian network example shown in Figure 1.
This example illustrates the progression of diseases D1 and D2 over time such that D1 at the next time slice depends
on D1 at the current time slice, and similarly for D2. S1 and S2 represent symptoms for the diseases. In Figure 1 we
have only indicated the model for two consecutive time slices.

D1 D2

o e:’ Z

Figure 1: An example of Dynamic Bayesian Network (DBN).

Creating the model in this fashion covering several time slices is a tedious job. Assuming that the structures and the
tables of the time slices are identical, and that the transition probabilities P(D1|D1 prev) and P(D2|D2 prev) identical
for all time slices (which is often the case in real-world applications), constructing such a time-sliced model can be
done very elegantly using instance nodes. First, we create the model for a single time slice (see Figure 2). This model
takes as input the disease nodes of the previous time slice, and the disease nodes D1 and D2 act as output nodes, since
they should be bound to the input nodes of the next time slice. The input nodes are indicated in Figure 2 with dashed
outlines.

52 © Copyright 2022, HUGIN EXPERT A/S



HUGIN Graphical User Interface Documentation, Release 9.3

Figure 2: BN representing a single time slice in the disease problem.

The transition probabilities P(D1|D1 prev) and P(D2|D2 prev) describing the temporal behavior as well as the proba-
bilities describing the atemporal behavior are contained in this model.

Second, we construct a model covering, say 10, time slices simply by creating k instances of the network in Figure 1
and bind the outputs of time slice 1 to the inputs of time slice 2, etc. In Figure 3, we have shown the resulting model
for k=3.

#_,.—-__,__"\ -——— ,.a"._-__‘-“-\ - ,.a"‘_-__‘-“-\ -———
4 4 l-’
1 [ L

’ "‘ ’ ~ ’ "‘
i D1 prev ;\ D2 prev | -;‘ D1 prev ! D2 prev -P"‘ D1 prev p DZ prev !

l“-‘__-_.-’H L“-‘__-_.-’H /’l“-‘_/_.-’#'l“-‘__-_.-"J /;/_-/_.;/’H-‘__-"
DiseaseSlice_1 / DiseaseSlice_2 / DiseaseSlice_3

Figure 3: A 3-time slices dynamic Bayesian network (DBN) specified as an object-oriented network.

If there are many instance nodes, the object-oriented network might appear somewhat cluttered. Therefore, once the
binding links have been created, we most often prefer to collapse the instance nodes, as shown in Figure 4.

l Disease_1 } l-l Disease_2 }

Figure 4: The DBN in Figure 3 with collapsed instance nodes.
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Accident Example

The following example was first used in Koller & Pfeffer (1997) Object-Oriented Bayesian Networks, Proceedings of
the 13th Conf. on UAI. The network (see Figure 5) models a car accident situation, and contains instance nodes for

subnetworks representing characteristics of the driver, the car, and the road.

Driver

‘

Diiving_skill @

- . -
r\ Ownar ags » '; Ownerin... »
-

- — - - — -

Car

Aecidant ...

.

- -,
* Weathar
“

- = -

Fuzad
Spead_limit

Figure 5: An object-oriented network describing a car accident situation.

Again, collapsing the instance nodes makes the network less cluttered, as illustrated in Figure 6.
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Aoaident ...

Figure 6: The network in Figure 5 with instance nodes collapsed.

Now, the network of which the car node is an instance contains itself several instance nodes, as shown in Figure 7.
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Figure 7: The network of which the car node is an instance.

Figure 7: The network of which the car node is an instance. The benefit of constructing this model using the object-
oriented network technology is indeed clear. HUGIN provides you with a tool to construct object-oriented networks.
After constructing an object-oriented network, you can do belief revision, belief updating, and much more, just as
for ordinary BNs. To learn how to build object-oriented networks using the HUGIN Graphical User Interface, please
consult the How fo Build OOBNs (page 56) tutorial.

3.2.7 How to Build an Object-Oriented Bayesian Network

This tutorial shows how to implement a small object-oriented network in the HUGIN Graphical User Interface. The
network we are about to construct is the one modeled in the Diseases example in the Object Orientation (page 51)
tutorial. The qualitative (or structural) representation of our object-oriented network is shown in Figure 1. In this
tutorial, we shall ignore the specification of the CPTs.

e — ™ ' N — N = _

'.P." _"-.\ - ‘-.\ s - ~ i -.\ ,." '-.\
i D1 prev DZ prev ! i D1prev ! D2 prev ! i Diprev !
N P - L - - -

l - l -7 = - e -

] / DiseaseSlice_3
] / _

Figure 1: Object-oriented network representing the Diseases problem.

If you want to understand the design of this object-oriented network, you should read about it in the Object Orientation
tutorial. Were we to construct this time-sliced network as a Bayesian network, we would get the network shown in
Figure 2.
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Figure 2: BN representation of the Diseases problem.

Creating the Time-Slice Model

A network (i.e., Bayesian network or LIMID) is a special case of an object-oriented network. What makes a network
object oriented is the existence of instance nodes (i.e., nodes that represent instances of other networks). Thus, we
start out by creating a new empty network by selecting the “New” menu item in the “File” menu. This gives us a new
network window containing an empty network called “unnamed<x>", where x is some integer. It starts up in Edit Mode
which allows us to start constructing the object-oriented network immediately (the other main mode is Run Mode which
allows you to use the network). ,

In Figure 2, we observe that each of the three time slices contains four nodes: D1, D2, S1, and S2, where D1 and D2
represent two different diseases with states “Present” and “Absent”, and S1 and S2 represent symptoms that both may
be observed as consequences of each of the diseases. We shall assume that S1 and S2 represent symptoms with two
possible outcomes, “Observed” and “Unobserved”. As each of the time slices are identical, both at the qualitative (or
structural) level and quantitative level (i.e., the CPTs are identical, including those that describe the temporal aspect,
namely P(D1_2|D1_1), P(D2_2|D2_1), etc.), we need only construct a model describing a generic time slice and then
connect three instances of this network.
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Creating the Nodes

First, we construct the generic time-slice model, containing the four nodes D1, D2, S1, and S2. The nodes all represent
discrete chance variables. Therefore, we select the Discrete Chance Tool (page 223) and create the four nodes by
clicking the left mouse button at four different locations in the network pane (page 177) while keeping the Shift key
down (to avoid reselecting the tool for each node). We then change the default names of the nodes and their default
state names using the Node Properties (page 212) pane. Second, we select the Link Tool and create the link from D1
to S1 by dragging the mouse cursor (i.e., pressing the left mouse button and moving the mouse cursor while keeping
the button pressed) from a point inside D1 to a point inside S1 and then releasing the mouse button. Again, we keep
the Shift key pressed, and create the other three links in the same manner. The result is illustrated in Figure 3.

Figure 3: BN for a single time slice of the Diseases problem.

Output Nodes

Now, in order for a network for a single time-slice have parent nodes in the immediately preceding network, we need
to be able to refer to nodes outside the network in Figure 3. In a conventional BN, this is not possible. Thus, as D1
and D2 are going to be parents of D1 and D2, respectively, in the next time slice, we must declare D1 and D2 as output
nodes, making them visible outside the network (or rather through instances of the network).

Input Nodes

Also, in the network in Figure 3, we should be able to specify the temporal aspect, namely the CPTs P(D1|D1 prev) and
P(D2|D2 prev), where the nodes “D1 prev” and “D2 prev” are placeholder nodes for D1 and D2, respectively, in the
immediately preceding time slice. Such placeholder nodes are referred to as input nodes, and shouldn’t be confused
with real nodes. A real node, which is type consistent with an input node, can be bound to that input node. That
is, an input node becomes identical with the node that is bound to it. However, if an input node hasn’t got a binding
associated with it, the network containing the input node can still be used (i.e., compiled in to a junction tree and used
for inference). In that case the input node is treated as a real node. That is, each input node has a CPT associated with
it just as any ordinary node, but this CPT is used only if no nodes have been bound to the input node in a network
containing an instance of the network in which the input node is defined. Input nodes and output nodes are collectively
referred to as interface nodes.
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Creating the Interface Nodes

Now, let’s try to put all this into practice. First, we declare D1 and D2 as output nodes. This is done by clicking the
“Output” check box in the Node Properties (page 212) pane for each of them. To indicate their new status as output
nodes, D1 and D2 now are drawn with thick borders of the color selected for interface nodes (as set in the Network
Properties (page 178) pane).

To create the two input nodes, “D1 prev” and “D2 prev”, we first create two ordinary nodes and set their names to
DI1_prev and D2_prev (and/or their labels to “D1 prev” and “D2 prev”), respectively, in the Node Properties pane.
Also, in the Node Properties pane for each of these two new nodes, we click the “Input” check boxes to declare them
as input nodes. Similar to D1 and D2, “D1 prev” and “D2 prev” are drawn with thick borders of the interface nodes
color. In addition, the appearance of the (regular) borders of “D1 prev” and “D2 prev” changes from solid to dashed,
which indicates that they are not real nodes.

Finally, we create links from “D1 prev’” and “D2 prev” to D1 and D2, respectively. The result of these operations appear
in Figure 4.

Figure 4: BN for a single time slice of the Diseases problem, including specifications of interface nodes.

Creating the Diseases Mode

To create the final Diseases model spanning three time slices, we first create a new empty network (via the “New”” menu
item in the “File” menu). Next, we select the /nstance Tool (page 152) and create three instance nodes by clicking the
left mouse button at three different locations in the network pane (page 177) while keeping the Shift key down. The
result appears in Figure 5 (scaled to 81%).
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Figure 5: The Network Pane contains the three instance nodes that represent three instances of the time-slice model
shown in Figure 4.

Each instance node appear as a rectangle with rounded corners. We note that the nodes declared as interface nodes in
the generic time-slice model appear in each of the instance nodes. The input nodes appear in a row at the top of the
instance node, and, similarly, the output nodes appear at the bottom of the instance node.

Next, we need to bind the output nodes of instances DiseasesSlice_1 and DiseasesSlice_2 to the input nodes of instances
DiseasesSlice_2 and DiseasesSlice_3, respectively. This is done by creating links (via the :ref:” Link Tool<Link_tool>"
) from the output nodes to the corresponding input nodes. The resulting model appears in Figure 6.

i T R ’ L ’ s g
i D1 prev H D2 prev i Diprev o« D2Zprev v Dilprev v DZprev !

DiseaseSlice_1 / DiseaseSlice_2 / DiseaseSlice_3

A A p oy p oy

Figure 6: The output nodes of an instance are bound to input nodes of another instance using the Link Tool.

Obviously, the model would look nicer if the order of appearance of the input nodes were reversed. If we select the
Select Tool (page 153), we can easily alter the order of appearance of the interface nodes. We move an interface node
one position to the left (right if the Shift key is down) by placing the mouse cursor on top of the interface node and
clicking the left mouse button. After reordering the network appears as in Figure 7.

- - - - - - - - - - - -

4
i D1 prev

\
'
LY

D2 N ¢ D1 ' " D2 N ¢ D1 " D2 N
prev ; prev ! i prev "1 prev i prev )

- / DiseaseSlice_3
/ / _

Figure 7: The order of appearance of interface nodes can be altered through simple mouse clicks..
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Finally, it is often desireable to be able to collapse one or more of the interface nodes in order to hide away irrelevant
details, thereby making the network much less cluttered. Again, if we activate the Select Tool (page 153), we can
collapse (expand) an expanded (collapsed) instance node, simply by clicking the left mouse button right outside the
node. Alternatively, we can choose the “Collapse Instance Nodes” (“Expand Instance Nodes”) menu item in the “View”
menu, which collapses (expands) all instance nodes.

The object-oriented network in Figure 7 with the instance nodes collapsed appear in Figure 8.

Figure 8: The object-oriented network in Figure 7 with the instance nodes collapsed.

Compiling the Object-Oriented Network

Now, assuming the CPTs of the time-slice model in Figure 4 has been filled in (see the futorial on BNs (page 26) for
details), it is the time to compile the network and see how it works:

* Press the Run Mode tool button in the Tool Bar (see Figure 9).

7

Figure 9: The Run Mode tool button.

* For each configuration of parent states in the CPT of a node the probabilities of the different states of the node
must sum to 1. In other words, each column of the table must sum to 1. If there is a column that does not sum
to 1, the compiler will normalize the values. This fact can be utilized when filling in the probabilities. Say, for
example, that the probability of D1=Present in the first time slice is based on the observation of 13527 patients,
168 of whom were observed to have the disease. Instead of first computing the fractions, you just put 168 in the
Present state of D1, and 13359 in the Absent state. Then the compiler will compute the proper values.

The compilation of small networks like the Diseases network is completed in very short time. After the compilation,
the Run Mode is entered (we have so far only been working in Edit Mode).
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Running the Object-Oriented Network

In Run Mode, the network window is split into two by a vertical bar (see Figure 10). To the left is the Node List Pane
and to the right is the Network Pane.

:__;] unnamed3 -0 x

S Ga2Cc 4 Soa’@ab Q

SR  Lnnameds
+ D Disease_1
+ [ Disease_z
+ [ Disease_3 R R
e ~ .7 ~
« Dlprev ' D2prav
~ [N ’

e ~ - ~
| D2prev 1 Diprev 1

11 D1 prev ‘|l D2 prev 1
. ‘

Disease_1

Figure 10: The network window in Run Mode. To the left is the Node List Pane (with all nodes collapsed) and to the
right is the Network Pane.

You can view the probabilities of a node being in a certain state by expanding the node in the Node List Pane. You
expand (collapse) a node by clicking its expand (collapse) icon in the Node List Pane, by double-clicking its node
symbol in the Node List Pane, or by selecting (deselecting) it in the Network Pane. You can also expand (collapse) all
nodes at once by pressing the expand (collapse) node list tool in the Tool Bar just to the right of the node properties
tool.

Unlike basic nodes, instance nodes don’t have belief monitors associated with them, as they represent entire
(sub)networks. Instead we must expand the instance node, whereby we get to see the list of nodes of the (sub)network
that the instance node represents (see Figure 11).
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Figure 11: The nodes of the network represented by an instance node, get displayed in the Node List Pane when the
instance node gets selected.
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If the instances contains many nodes, locating a given node in the node list may be difficult. When this is the case, the
instance can be “fraversed” (page 121) by right-clicking on the node and selecting “Traverse Instance” (or selecting
the node and choosing “Traverse Instance” from the network menu). This will open a window with compiled version
of the class from which the instance node is created. In this window evidence can be inserted, and then transferred to
any available instance. When the instances contains many nodes, it is possible to hide all private nodes from the node
list to prevent the list from being to cluttered. This is done by selecting Toggle Private Nodes (page 242) in the View
menu. For more details on the Run Mode, please consult the How fo Build BNs (page 26) tutorial.

3.2.8 Node Table Tutorial

This tutorial explains the functionalities of node tables. To each chance node in a Bayesian network and each node in a
(limited-memory) influence diagram is assigned a table, specifying a function associated with the node. Each decision
node has a table specifying the initial policy for the decision variable represented by the node. These tables are referred
to as node tables. The types of the tables (page 66) differ depending on the types of the nodes.

The HUGIN Graphical User Interface provides a number of powerful features for displaying node tables (page 70),
including resizing, collapsing selected sets of columns, graphics display modes, etc. Furthermore, the user can choose
between two different ways of organizing the tables:

 Framed tables (Figure 1)
» Tabbed tables (Figure 2)

= mrs_gibbon - 0O x
i o
=l =20\ N T®Oa®a 4[]
Grass? x
Edit Functions View Edit Functions View
Sprinkler? yES no yes 0.1
1 Rain? yES no yES no no 0.9
yes 1 0.9 0.99 i)
» NO 0 0.1 0.01 1
Edit Functions View
yes 0.1
no 0.9

Figure 1: Tables displayed in framed mode
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»

1-"__‘.':] mrs_gibbon - 0O x
[ P
=l =2 O\ N T®Oa®a 4[]
Grass? x

Edit Functions View Edit Functions View

Sprinkler? b= no yes 0.1

* Rain? yes [i+] yes [i+] no 0.9

yes 1 0.9 0.99 0

no ] 0.1 0.01 1

Edit Functions  View

yes 0.1
no 0.9

Figure 2: Tables displayed in tabbed mode

The framed mode has the advantage that several tables can be viewed at once, whereas the tabbed mode is a lot more
compact (with several open tables) and it is easier to navigate the tables. The preferred table mode can be set in the
Preferences (page 200), and it can be changed by selecting the “Toggle Table Mode” item in the View Menu (page 188)
of a table.

The probabilities and utilities of discrete chance nodes and utility nodes, respectively, can be specified manually (i.e.,
directly through click-and-type operations) or they can be specified indirectly through specification of powerful ex-
pressions (page 150), which (if appropriate) can save a lot of work. The initial policy for a decision node can also be
specified both manually and using expressions.

For all four kinds of tables, there is a menu bar containing an Edit menu (page 67), a Functions menu (page 68), and a
View menu (page 69).

When working in Edit Mode (page 124) with the Tables Pane (page 239) open, the currently selected nodes will have
their tables displayed in the Tables Pane.

Modes
For discrete chance nodes (page 223), discrete decision nodes (page 224), and utility nodes (page 226) the node table
has two different modes:

* Manual mode in which the numbers (probabilities or utilities) can be specified manually. This is the default
mode, see Figure 1.

» Expressions mode in which the numbers can be specified through one or more mathematical expressions, see
Figure 2.

64 © Copyright 2022, HUGIN EXPERT A/S



HUGIN Graphical User Interface Documentation, Release 9.3

Grass? 4
Edit Functions  View
Sprinkler? VES no
! Rain? yes no yes no
yes 1 0.9 0.99 0
» N W] 0.1 0.01 1
Figure 1: A CPT in manual mode.
Grass? X
Edit Functions View
Expression  Undefined
*  Sprinkler? yes no
Rain? YES no YES no
3 Yes 2 ? ? ?
no 2 ? ? ?

Figure 2: A CPT in expressions mode.

To switch between the two modes, select the appropriate item in the Functions menu of the node table, see Figure 3.

Edit
Spri
R
yes
* no

<

S—

Funictionis

Grass?

View

Experience and Fading >

Expressions >
Set type »>
Export table
Import table

States Generator

no

no

Switch to expressions

Build Expression

Figure 3: Selection of Expressions mode.

In Expressions mode there are one or more editable text fields in which expressions can be specified (one in each text
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field) either manually or through the Expression Builder (page 274). The number of text fields available depends on
the number of states of the model nodes. If no model nodes have been specified, there will only be one text field (i.e.,
the same expression is used for all parent configurations).

Types of Tables

For discrete chance nodes (page 223) this function expresses a conditional probability distribution over the states of the
node for each configuration of the states of the parents of the node, which are also discrete chance nodes. The conditional
probability distribution (or marginal probability distribution in case of no parents) is represented as a conditional
probability table (abbreviated CPT). Figure 4 shows an example of a CPT for the node Grass with parents Rain and
Sprinkler.

Grass? ]

Edit Functions  View

Sprinkler? yES no
1 Rain? yes no yes no
V=] 1 0.5 0,99 0
na i) 0.1 0,01 1

Figure 4: The CPT of node Grass with parents Rain and Sprinkler.

For each continuous chance node (page 224) with discrete parents I and continuous parents Z, the function expresses
a (one-dimensional) Gaussian distribution conditional on the values of the parents:

P =i,Z =2) =N(a() +50)170))

Note that the mean depends linearly on the continuous parents and that the variance does not depend on the continuous
parents. However, both the linear function and the variance are allowed to depend on the discrete parents. (These
restrictions ensure that exact inference is possible.) Thus, for each configuration of the discrete parents, a mean and
a variance parameter must be specified, as well as a regression parameter for each continuous parent. Figure 5 shows
the table for the continuous node Dust Emission (Emission) with discrete parents Burning Regimen (Burn) and Waste
(Waste Type), and the continuous parent Filter Efficiency (Efficiency).

Dust emission X

Edit Functions View

Burning regi... stable unstable
Waste type | industrial | household|| industrial || household

Intercept 6.5 5] 7.5 7

Filter effic... 1 1 1 1

Variance 0.03 0.04 0.1 0.1

Figure 5: The table for continuous node Emission with parents Burn and Waste.

For each utility node (page 226), the function associated with the node expresses a utility function, where a utility value
has to be specified for each configuration of its parents, which can be discrete chance and decision nodes. Figure 6
shows the table for the utility node Utility with the discrete chance node Oil and the discrete decision node Drill as
parents.
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Utility x
Edit Functons WView
d Dorill drill not-drill
il dry wet soaking dry wet soaking
|ility -7 50 200 0 1] 0]
*

Figure 6: The table for utility node Utility with parents Drill and Oil.

For each decision node (page 224) is associated a decision table, which is an encoding of the initial policy for the
decision node. Figure 7 shows the table of a decision node, D, with decision options “drill” and “don’t drill”.

Drill X
Edit Functions View

" drill 1
not-drill 1

Figure 7: The decision table of a decision node D.

Edit Menu

The Edit menu provides the following functionalities (see Figure 8):

Copying the selected cells of the table. Several cells can be selected by dragging the mouse cursor (i.e., move
the mouse while keeping the left mouse button down). The selected cells will be highlighted.

Pasting what has previous been copied. The destination cells of the paste operation are given as those covered
by the rectangle extending right and down from the cell selected (i.e., the selected cell defines the upper-left cell
of the destination cells).

Renaming / relabeling of the node associated with the table. When selected, this menu item makes a dialog box
appear through which the name and label of the node can be changed. Note that this dialog box is also available
by right-clicking the title bar of the table.

Normalizing the probability distributions of a CPT (i.e., making the probabilities in each distribution - one for
each parent configuration - sum to 1).

Resetting the values of all cells in the table to their default values (1 for CPTs and fading tables, and O for utility
and experience tables). (See the section on Learning - Adaptation (page 244) for a description of experience and
fading tables.)

Randomizing the values of all cells of a CPT (i.e., assigning random values between 0 and 1 to all probabilities
in each distribution, making sure that the values for each distribution sum to 1).

Creating an identity table the values of each cell on the diagonal is assigned a value of 1 and every other cell is
assigned a value of 0.

Please note that the copy and paste operations also work across applications (e.g., to/from the HUGIN node table
from/to Excel, Word, Emacs, etc.).
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Grass? x

Edit Functions View

T no
i | yes no
o 0.99 0
! = 0.01 1
1 Rename | relabel
Mormalize
Reset >
Randomize

Figure 8: Edit menu for the node table.

Functions Menu

The Functions menu provides the following functionalities (see Figure 9): Creating and deleting experience and fading
tables is performed via the Experience and Fading submenu (see Figure 10). (See the section on Learning - Adaptation
for a description of experience and fading tables.) Specifying expressions (models) for how to generate the values of
the cells of CPTs and utility tables. See section Expressions for details. Setting the type of the node to one of Labelled,
Boolean, Numbered, or Interval if the node is a discrete chance node or a discrete decision node. See section Node
Type for details on node types. Exporting the table (i.e., the values of the cells of the table) to either an x-delimited text

I3

file, where ‘x’ can be ‘,, ‘<space>’, or ‘<tab>’.

Grass? X
Edit Functions \View
Spri no
< R Experience and Fading > =
yes [i]
, o Expressions > 1
N | Set type »
Export table
Import table

States Generator

Figure 9: Functions menu for the node table.
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oil X

Edit Functions View

dry 0.5
* wet 0.3
soaking 0.2

» Experience 0
Fading 1

Figure 10: Experience and fading tables created and shown.

View Menu

The View menu provides the following functionalities (see Figure 11):

Grass? x

Edit Functions | View

Sprinkler? |
‘  Rain? 1 Display mode »
YES 1
no a Color Chart Configuration

Locate Node

Table predsion

Toggle table mode

= Mode Properties...

Figure 11: View menu for the node table.

Below are some test paragraphs.

* Selecting display mode. A number of different modes for displaying the numbers of the table are available:

Normal mode in which only the numbers are displayed.

Bar mode in which each number is overlaid by a bar of length corresponding to the number (see Figure 16).

Pure bars mode in which only the bars are shown (see Figure 17).

Auto normalize can be turned on, meaning that when dragging a bar the other bars belonging to the distri-
bution are automatically adjusted to make sure the numbers (represented by the bar lengths) sum to 1.

e Locate Node selects and scrolls to the node whose table is viewed.
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» Show / hide experience table toggles between showing or hiding the experience table, if any.
» Show / hide fading table toggles between showing or hiding the fading table, if any.

* Show state labels shows state labels for numbered or interval nodes (instead of state values). This allows for

CLINT3

emulation of “ordinal” nodes. That is, a node can have the state labels “low”, “medium”, and “high”, and these
will have a natural ordering which can be used in expressions.

 Table Precision displays a dialog for setting the number of decimals shown in the table.
* Toggle table mode toggles between framed and tabbed tables.
* Node Properties shows the properties (page 216) for the node whose table is viewed.

See the next section (page 70) for more details on display modes.

Displaying a Node Table

When the Tables Pane (page 239) is open, the tables for the nodes selected in the Netrwork Pane (page 177) will be
displayed. The HUGIN Graphical User Interface has a number of powerful features for displaying node tables:

* Resizing through dragging

* Re-ordering of parents

 Collapsing the display of subsets of parent configurations
* Displaying probabilities as numbers, bars, or both.

A node table frame (i.e., the internal window displaying the table) can be resized arbitrarily by clicking and holding
(i.e., dragging) the left mouse at the border of the frame. The width of the cells of the table resizes correspondingly.
The width of the first column (containing parent and state names) can be resized by dragging the left mouse button at
the border between the first and the second column. This can be useful if the parent and/or state names are very long
or very short.

The order of appearance of the parents in the node table can be changed in Table tab (page 234) of the Node Properties
pane. This can be useful for grouping together sets of distributions.

Also, for better viewing of selected sets of distributions, sets of columns (corresponding to sets of parent configurations)
can be collapsed by double-clicking the appropriate labels for parent states. Figure 12 shows (part of) the table for node
C5 with parents C1, C2, C3, and C4. Now, suppose we're interested in working with the probability distributions for
C1 in state “State 2”. One option would be to use the horizontal scroll bar. Another, much easier and more convenient
approach would be to collapse the part of the table where C1 is in state “State 1”. This can be achieved by double-
clicking the text field labeled “State 1” in the C1 row.

Edit Functions  View

s |
C4 State 1 State 2
C3 State 1 State 2 State 1
c2 State 1 State 2 State 1 State 2 State 1 State 2
< C1 State 1 || State 2 | State 1 | State 2 || State 1 || State 2 | State 1 || State 2 | State 1 | State 2 || State 1 || State 2
State 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
, State 2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
State 3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

. >

Figure 12: The table for node C5 with all columns collapsed for which the state of parent node C1 equals “State 2”.
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Figure 13 shows the resulting table. Note that the width of the cells has changed, allowing us to see all digits after
the decimal point. Likewise, we can collapse other columns. In general, the cells in the parent states section can be
double-clicked for all parent rows but the last, making the corresponding columns collapse. Figure 14 shows the table
with all columns collapsed where the states for all parent nodes but C4 equals “State 1.

Edit Functions View
s |
Ca State 2
C3 State 1 State 2
c2 State 2 State 1 State 2
“ Ci State 1 State 1 State 2 State 1 State 2 State 1 State 2
State 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2
'Statel 003 0.3 0.3 0.3 0.3 0.3 0.3
State 3 . 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Figure 13: The table for node C5 with all columns collapsed for which the state of parent node C1 equals “State 1”.

Edit Functions View

s |

State 1
, State 2
State 3

Jaa 0.2
0.3
.. 0.5

State 2
State 2
State 2
State 1 State 2
0.2
0.3
0.5

Figure 14: The table for node C5 with all columns collapsed for which the states of parent nodes C1, C2, and C3 equal

“State 17

A collapsed column can be expanded by double-clicking the top cell of the column. Please note that when changing
the order of appearance of the parents (see above), any collapsed columns will be expanded. Sometimes, viewing
or even specifying probability distributions graphically instead of numerically is preferable. The HUGIN Graphical
User Interface allows the user to select among three different display modes: The numerical mode (denoted the Normal
mode), the numerical and graphics mode (denoted the Bar mode), and the graphics mode (denoted the Pure bars mode).
The desired mode can be selected under the View menu, see Figure 15.
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[r—

Edit Functions |‘-'iew| [ * |
B [ rejp—
5 )
c3 Color Chart Configuration B Bar mode
c2
Ci Locate Mode M Purebars mode e
State 1
State 2 . Show experience table o Auto normalize
State 3
« Show fading table
Show state labels

Table predsion

Toggle table mode

=1 Mode Properties...

Figure 15: The probabilities of a table for a discrete chance node can be displayed numerically, graphically, or both
numerically and graphically.

Figures 16 and 17 show the table of Figure 14 in Bar mode and Pure bars mode, respectively.

Edit Functions View x

C4 State 2
C3 State 2

-
i
]

State 2

State 1

State 2

Edit Functions

View

Figure 16: The CPT for node C5 displayed in Bar mode.

State 2

_

State 2

State 2

State 1

State 2

Figure 17: The CPT for node C5 displayed in Pure Bars mode.

Graphical specification of probabilities is performed by dragging the bars with the left mouse button. When Bar mode
or Pure bars mode have been selected, the distributions can be set to auto-normalize when the probabilities are changed.
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This feature can be selected under the Display mode submenu of the View menu.

Please note that the graphical viewing and specification mode is available only in tables for discrete chance and decision
nodes.

3.2.9 Table Generator Tutorial

This tutorial shows you how the Table Generator functionality can be used to simplify the specification of conditional
probability tables (CPTs) for discrete chance nodes, utility tables for utility nodes, and initial policies for decision nodes.
The tutorial describes how these tables can be described compactly using models and expressions. This is particularly
useful when the conditional probability distribution for a variable follows (at least approximately) certain functional or
distributional forms. In such cases it is cumbersome to specify the conditional probability table (CPT) manually.

Since the type of expressions available depends on the type of the node, it will be illuminating to discuss the different
node sub-types (page 73) that are supported by the HUGIN Decision Engine.

A model consists of a list of discrete nodes and a set of expressions (one expression for each configuration of the states
of the nodes). The list of nodes of a model is referred to as model nodes (page 74).

An expression is built using standard statistical distributions (e.g., Normal, Binomial, Beta, Gamma, etc.), arithmetic
operators, standard mathematical functions (e.g., logarithmic, exponential, trigonometric, and hyperbolic functions),
logical operators (e.g., and, or, if-then-else), and relations (e.g., less-than, equals).

Expressions can be constructed manually (see syntax for expressions (page 84)) or by the assistance of the Expression
Builder (page 274), which guides the user through the construction, using series of dialog boxes.

Sub-Typing of Discrete Nodes

The different operators used in an expression have different return types and different type requirements for arguments.
Thus, in order to provide a rich language for specifying expressions, it is convenient to have a classification of the
discrete chance and decision nodes into different groups (see also section Node Type (page 216)):

* Labelled nodes can be used in equality comparisons and to express deterministic relationships. For example,
a labelled node C1 with states “State 17 and “State 2” can appear in an expression like ‘if (C1 == “State 17,
Distribution (0.2, 0.8), Distribution (0.4, 0.6))’ for P(C2 | C1), where C2 is another discrete chance node with
two possible states.

* Boolean nodes represent the truth values ‘false’ and ‘true’ (in that order) and can be used in logical operators.
For example, for a Boolean node, B0, being a the logical OR of its (Boolean) parents, B1, B2, and B3, P(BO|B1,
B2, B3) can be specified simply as ‘or (B1, B2, B3)’.

* Numbered nodes represent increasing sequences of numbers (integers or reals) and can be used in arithmetic
operators, mathematical functions, etc.

* Interval nodes represent disjoint intervals on the real line and can be used in the same way as numbered nodes. In
addition, they can be used when specifying the intervals over which a continuous quantity are to be discretized.

Numbered nodes and interval nodes are jointly referred to as numeric nodes.

© Copyright 2022, HUGIN EXPERT A/S 73



HUGIN Graphical User Interface Documentation, Release 9.3

Constant Values

The following kinds of constants can be used in expressions:
* State labels (i.e., sequences of characters encapsulated in quotation characters (*)).

* Numeric values (including integers, reals, and intervals of integers and reals). For example, a valid numeric
expression could be “X + 3.4” (without the quotation characters; otherwise, it will be interpreted as a state
label), where X is the name of a numeric node (page 73).

* Infinity. Positive infinity is denoted by “inf” (without the quotation characters), and negative infinity by “-inf”.

* Boolean values: “false” and “true” (without the quotation characters). Notice that the Boolean constants must
be indicated using lower case.

Model Nodes

Quite often one needs different expressions depending on the states of one or more parent nodes. Using a number
of nested if-then-else expressions is one way of coping with this. The resulting expression, however, often gets very
complicated and hence difficult to evaluate by visual inspection and, thus