# References¶

**S. K. Andersen, K. G. Olesen, F. V. Jensen & F. Jensen (1989).**Hugin – a shell for building Bayesian belief universes for expert systems. In*Proceedings of the Eleventh International Joint Conference on Artificial Intelligence*, pages 1080-1085, Detroit, Michigan, Aug. 20-25.**I. Beinlich, H. Suermondt, R. Chavez & G. Cooper (1989).**The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks.*Proceedings of the second European Conference on Artificial Intelligence in Medicine,*pp 247-256.**B. Boerlage (1992).**Link Strength in Bayesian Networks. MSc thesis, Department of Computer Science, University of British Columbia, Canada. Also*Tech. Report 94-17,*Department of Computer Science, University of British Columbia, Canada.**O. Cappe & E. Moulines**. Online em algorithm for latent data models. Journal of the Royal Statistical Society Series B (Statistical Methodology), 71(3):593-613, 2009.**G. Cooper (1984).**NESTOR: A computer-based medical diagnostic aid that integrates causal and probabilistic knowledge. PhD thesis, Medical Information Sciences, Stanford University, Stanford, CA.**R. G. Cowell & A. P. Dawid (1992).**Fast retraction of evidence in a probabilistic expert system.*Statistics and Computing,*2:37-40.**A. P. Dawid (1992).**Applications of a general propagation algorithm for probabilistic expert systems.*Statistics and Computing,*2:25-36.**D. Heckerman, J. Breese & K. Rommelse (1994).**Troubleshooting under Uncertainty.*Technical report msr-tr-94-07.*Microsoft Research, Advanced Technology Division, Microsoft Corporation.**F. Jensen (1994).**Implementation aspects of various propagation algorithms in Hugin. Research Report R-94-2014, Department of Mathematics and Computer Science, Aalborg University, Denmark.**F. Jensen & S. K. Andersen (1990).**Approximations in Bayesian belief universes for knowledge-based systems. In*Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence,*pages 162-169, Cambridge, Massachusetts, July 27-29.**F. Jensen, F. V. Jensen & S. L. Dittmer (1994).**From influence diagrams to junction trees. In R. L. de Mantaras and D. Poole, editors,*Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence,*pages 367-373, Seattle, Washington, July 29-31. Morgan Kaufmann, San Mateo, California.**F. V. Jensen, S. L. Lauritzen & K. G. Olesen (1990(1)).**Bayesian updating in causal probabilistic networks by local computations.*Computational Statistics Quarterly,*4:269-282.**F. V. Jensen, K. G. Olesen & S. K. Andersen (1990(2)).**An algebra of Bayesian belief universes for knowledge-based systems.*Networks,*20(5):637-659. Special Issue on Influence Diagrams.**F. V. Jensen, B. Chamberlain, T. Nordahl & F. Jensen (1991).**Analysis in Hugin of data conflict. In P. P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, editors,*Uncertainty in Artificial Intelligence,*volume 6, pages 519-528. Elsevier Science Publishers, Amsterdam, The Netherlands.**F. V. Jensen (2001).***Bayesian Networks and Decision Graphs,*Springer.**F. V. Jensen (1996).***An Introduction to Bayesian Networks,*Springer.**U. Kjærulff (1990).**Triangulation of graphs - algorithms giving small total state space.*Research Report R-90-09.*Department of Mathematics and Computer Science, Aalborg University, Denmark.**S. L. Lauritzen (1992).**Propagation of probabilities, means, and variances in mixed graphical models.*Journal of the American Statistical Association (Theory and Methods),*87(420):1098-1108.**S. L. Lauritzen (1995).**The EM algorithm for graphical association models with missing data.*Computational Statistics & Data Analysis,*19:191-201.**S. L. Lauritzen, A. P. Dawid, B. N. Larsen & H.-G. Leimer (1990).**Independence properties of directed Markov fields.*Networks,*20(5):491-505. Special Issue on Influence Diagrams.**S. L. Lauritzen and D. Nilsson.**Representing and solving decision problems with limited information. Management Science, 47(9):1235–1251, Sept. 2001.**S. L. Lauritzen & D. J. Spiegelhalter (1988).**Local computations with probabilities on graphical structures and their application to expert systems.*Journal of the Royal Statistical Society, Series B (Methodological),*50(2):157-224.**J. Matheson (1990).**Using Influence diagrams to value information and control.*Influence Diagrams, Belief Networks and Decision Analysis.***R. Neapolitan (1990).**Probabilistic Reasoning in Expert Systems: Theory and Algorithms. John Wiley & Sons, New York.**K. G. Olesen, S. L. Lauritzen & F. V. Jensen (1992).**aHugin: A system creating adaptive causal probabilistic networks. In D. Dubois, M. P. Wellman, B. D’Ambrosio, and P. Smets, editors,*Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence,*pages 223-229, Stanford, California, July 17-19. Morgan Kaufmann, San Mateo, California.**J. Pearl (1988).***Probabilistic Reasoning in Intelligent Systems.*Morgan Kaufmann, San Mateo, CA.**J. Pearl (2000).**Causality: Models, Reasoning, and Inference.*Cambridge University Press, UK.***D. Poole & E. Neufeld (1988).**Sound probabilistic inference in Prolog: An executable specification of influence diagrams.**R. Qi (1994).**Decision graphs: Algorithms and applications to influence diagram evaluation and high-level path planning under uncertainty. PhD thesis, Department of Computer Science, University of British Columbia, Canada.*Also Tech. Report 94-27,*Department of Computer Science, University of British Columbia, Canada.**H. Raiffa (1968).***Decision Analysis, Introductory Lectures on Choices under Uncertainty.*Addison-Wesley, Reading, Massachusetts.**L. K. Rasmussen (1995(1)).**Bayesian network for blood typing and parentage verification of cattle.*Dina research report no. 38.*Department of Mathematics and Computer Science, Aalborg University, Denmark.**L. K. Rasmussen (1995(2))**. BOBLO: an expert system based on Bayesian networks to blood group determination of cattle.*Research report 16.*Research Center Foulum, Denmark, PB 23, 8830 Tjele, Denmark.**J. Smith, S. Holtzman & J. Matheson (1993).**Structuring conditional relationships in influence diagrams*Operations Research,*41(2):280-297.**D. J. Spiegelhalter & S. L. Lauritzen.**Sequential updating of conditional probabilities on directed graphical structures.*Networks*, 20(5):579-605, Aug. 1990. Special Issue on Influence Diagrams.**P. Spirtes, C. Glymour & R. Scheines (2000).**Causation, Prediction, and Search.*MIT Press*, Adaptive Computation and Machine Learning, second edition.**L. Zhang (1993).**A computational theory of decision networks. PhD thesis, Department of Computer Science, University of British Columbia, Canada.*Also Tech. Report 94-8,*Department of Computer Science, University of British Columbia, Canada.**S. L. Lauritzen and D. Nilsson. (2001)**Representing and solving decision problems with limited information.*Management Science,*47(9):1235 - 1251, Sept. 2001.